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Introduction 
Reflectometry involves measurement of the intensity of a beam of 

electromagnetic radiation or particle waves reflected by a planar surface or by planar 
interfaces. The technique is intrinsically sensitive to the difference of the refractive index 
(or contrast) across interfaces.  For the case of specular reflection, i.e., the case when the 
angle of reflection, αr, equals the angle of incidence, αi, [see Figure 1(a)], the intensity of 
the reflected radiation is related to the depth dependence of the index of refraction 
averaged over the lateral dimensions of the surface or interface.   In this simplest example 
of reflectometry, the sharpness of an interface can be quantitatively measured, the 
distance between two or more planar interfaces can be obtained, and the strength of the 
scattering potential, i.e., the index of refraction, between the interfaces can be measured 
relative to that of the medium through which the radiation travels to reach the sample 
surface (in many cases the surrounding medium is air or vacuum—for neutron scattering 
there is little distinction).   In more complex situations, variations of the refractive index 
within the plane of the interface may give rise to diffuse scattering or off-specular 
reflectivity, i.e., radiation reflected away from the specular condition [see Figure 1(b and 
c)].  From measurements of off-specular reflectivity, correlations between lateral 
variations of the scattering potential along an interface can be deduced.  Off-specular 
scattering introduces a component of wavevector transfer in the plane of the sample 
mostly parallel to the incident neutron beam [Figure 1(b)] [1] or perpendicular to it 
[Figure 1(c)] [23]. 
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Figure 1 Scattering geometry for (a) specular reflectometry, where αr = αi, (b) off-specular 
reflectometry where αr ≠ αi, and (c) glancing incidence diffraction where 2θ ≠ 0.  The components of 
wavevector transfer, Q = kf – ki are shown for each scattering geometry. 

So far, the capabilities of reflectometry have been described without regard to the 
kind of radiation used.  Many detailed discussions of X-ray [4, 5, 6, 7, 8, 9, 10] and 
unpolarized neutron reflectometry [10, 11] from non-magnetic materials can be found in 
the literature.  Treatments of X-ray reflectometry invariably use concepts of optics and 
Maxwell’s equations.  Treatments of neutron reflectometry can be optical in nature, but 
often treat the neutron beam as a particle wave and use quantum mechanics to calculate 
reflection and transmission probabilities across interfaces bounding potential wells. In the 
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present chapter, we focus on reflectometry of magnetic thin films and artificially 
structured magnetic materials using polarized neutron beams. 

Polarized neutron reflectometry is a tool to investigate the magnetization profile 
near the surfaces of crystals, thin films and multilayers. Surface (or interface) sensitivity 
derives from working in glancing incidence geometry near the angle for total external 
reflection.  Polarized neutron reflectometry is highly sensitive, having measured the 
absolute magnetization of a monolayer of iron (~10-4 emu) with 10% precision [12], and 
magnetization density as small as 30 emu/cm3 (e.g., as found in Ga0.97Mn0.03As) with 
comparable precision.  Detection of small moments (from samples with surfaces 
measuring a ~4 cm2 in area) is combined with excellent depth resolution—a fraction of a 
nanometer even for films as thick as several hundred nanometers.  Reflectometry has 
enjoyed dramatic growth during the last decade and has been applied to important 
problems such as, the influence of frozen or pinned magnetization on the origin of 
exchange bias [13], the influence of exchange coupling on magnetic domain structures 
[14, 15], and the identification of spatially inhomogeneous magnetism in nanostructured 
systems [16, 17, 18].  

Several descriptions of polarized neutron reflectometry are available in the 
literature [19, 20, 21, 22, 23, 24, 25].  Recently reviews of polarized neutron 
reflectometry, one that includes illustrative examples [26], and a second very detailed 
account of the scattering of polarized neutron beams, with copious mathematical 
derivations of formulae, have been published [27,28].  In this chapter, we present a 
tutorial on polarized neutron reflectometry, a description of a polarized neutron 
reflectometer at a pulsed neutron source, and examples of applications of the technique. 

Neutron scattering in reflection (Bragg) geometry 
Reflectometry with unpolarized neutron beams 

In Figure 2, we show the general situation for a neutron beam with wavelength λ 
represented by a plane wave in air (Medium 0) with incident wavevector ki (|ki| = k0 = 
2π/λ) and reflected wavevector kf (reflected by the sample, Medium 1).  A portion of the 
plane wave is transmitted across the reflecting interface with wavevector kt.  Depending 
upon the distribution of chemical or magnetic inhomogenities in the plane of the sample, 
neutron radiation can be scattered in directions such that 2θ ≠ 0 and/or αr ≠ αi [see Figure 
1].  The case of elastic and specular (2θ = 0 and αr = αi) reflection is the simplest to treat.  

Neutron scattering is called elastic when the energy 
nm

k
E

2

22
0h

=  of the neutron is 

conserved.  Thus, the magnitudes of ki and kf are equal, i.e., |ki| = | kf|.  The magnitude of 
kt in Medium 1, |kt| = k1, may be (and usually is) different than that of Medium 0.   
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Figure 2 Schematic diagram showing the incident, reflected and transmitted wavevectors.  The 
sample in this case is Medium 1. 

The quantity measured in a neutron reflectometry experiment is the intensity of 
the neutron beam reflected from the surface.  The probability of reflection or the 
reflectivity is given by the reflected intensity divided by the incident intensity. To 
calculate the reflectivity of an interface, we apply the time-independent Schrödinger 
equation [29] to obtain a solution for the wave function, Ψ, representing the neutron 
wave inside and outside of the reflecting sample. Dropping the parts of the wave function 
with wavevector components parallel to the interface (we consider a potential that varies 
in only one dimension which cannot change the neturon’s wavevector parallel to the 
interface), the wave functions in mediums 0 and 1 are given by: 
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Equation 1 

Unless otherwise noted, ki is the component of the wavevector ki that is perpendicular to 
the sample surface. 

The neutron reflectivity, R, of the interface is related to the reflection amplitude, 
r, by R = rr*.  Ψ is obtained by solving Schrödinger’s equation: 
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where V(y) is the depth dependent scattering potential.  For a planar sample, the neutron 
(nuclear) scattering potential is represented by the expression: 
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Equation 3 
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where ρ(y) is the neutron scattering length density in units of Å-2.  Owing to the decay in 
the strength of the reflected neutron beam with wavevector transfer (discussed later), 
neutron reflectometry usually involves measurements that are restricted to fairly small 
wavevector transfer, Q⊥ < 0.3 Å.  Over this range of Q⊥, the scattering medium can be 
considered to consist of a continuous scattering length density  of N (scattering centers or 
formula units per unit volume) each with coherent neutron scattering length b.  For 
systems composed of a mixture of elements or formula units,  

i

J

i
ibN∑=ρ  

Equation 4 

where J is the number of distinct isotopes, and Ni and bi are the number density and 
scattering length for the i-th species.  Values of N, b and ρ are given for a number of 
common materials in Table 1 [30].    

Invoking the condition of elastic scattering, Equation 2 can be rewritten as:  
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Equation 5 

In the language of ordinary light optics, the ⊥-component of the wavevector in 
Medium 1, k1, is related to the ⊥-component of the wavevector in Medium 0, k0, through 
the index of refraction, n, by  

02
0

01
41 k
k

nkk πρ
−==  

Equation 6 

During an experiment, the intensity of the reflected radiation is measured for 
selected values of k0, which are chosen either by changing the angle of incidence of the 
beam to the sample surface, αi, and/or by changing the wavelength, λ, of the neutron 
beam.  For sufficiently small values of k0, the index of refraction will be purely 
imaginary, so the neutron wave in Medium 1 is evanescent [31].  Therefore, the wave is 
reflected by the sample with unit probability.  The wavevector transfer Q⊥ at which n 
obtains a real component is the called the critical edge, Qc.  For Q⊥ < Qc, the reflected 
intensity is unity, and provides a means to normalize the reflectivity to an absolute scale 
(in contrast to small angle neutron scattering).  Since the reflectivity of the sample is 
unity below Qc, the scattering in this region is strong, so a dynamical treatment of the 
scattering is required. By dynamical, we mean the wave function inside Medium 1 is not 
the same as that illuminating the sample. Because the Born approximation [29] is a 
perturbation theory, it is valid for weak scattering, e.g., small-angle neutron scattering in 
transmission geometry, so this approximation is not adequate for calculating reflection of 
neutrons or X-rays at glancing angles from planar or nearly planar interfaces. 
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Table 1 Listing of common elements and their neutron nuclear and magnetic scattering length densities. 

Material  Number
density, N 

 [Å-3] 

Nuclear 
scattering 

length, b [Å] 

Magnetic moment, 
µ [µB] 

Nuclear scattering length 
density, ρn [Å-2] 

Magnetic scattering length 
density, ρm [Å-2] 

Ag       5.86 x10-2 5.92 x10-5 3.47 x10-6

Al      6.02 3.45 2.08
Al2O3      2.13 24.4 5.21

Au      5.90 7.90 4.66
Co     9.09 2.49 1.715 2.26 4.12 x10-6 
Fe     8.47 9.45 2.219 8.00 4.97 x10-6 

FeF2     2.75 20.76 5.71  
Fe2O3 

(hematite) 
2.00     36.32 7.26

Fe3O4 
(magnetite) 

1.35    51.57 4.1 6.97 1.46 x10-6 

GaAs      2.21 13.87 3.07
LaAlO3      1.84 29.11 5.34
LaFeO3      1.65 35.11 5.78
LaMnO3      1.71 21.93 3.75

MgF2      3.07 16.68 5.12
MgO      5.35 11.18 5.98
MnF2      2.58 7.58 1.96

Nb      5.44 7.05 3.84
Ni     9.13 10.3 0.604 9.40 1.46 x10-6 

58Ni     9.13 14.4 0.604 13.14 1.46 x10-6 
62Ni     9.13 -8.7 0.604 -7.94 1.46 x10-6 

Ni81Fe19     8.93 10.14 1.04 9.06 2.46 x10-6 
NiO     5.49 16.11 8.84  

 8



Pd      6.79 5.91 4.01
Pt      6.60 9.60 6.34
Pu  4.88 5.8±2.3  2.8±1.1  
Si      4.99 4.15 2.07

SiO2      2.66 15.76 4.19
SrTiO3      1.68 21.00 3.54

U      4.82 8.417 4.06
V      6.18 -0.38 -0.23
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Theoretical Example 1: Reflection from a perfect interface 
surrounded by media of infinite extent 

The goal of a reflection experiment is to determine the distribution of material 
within the sample from its reflectivity as a function of Q⊥.  To accomplish this goal, we 
need to determine the probabilities that the wave function is reflected and transmitted by 
the sample.  Conservation of neutron intensity, i.e., |Ψ|2 = 1, and conservation of 

momentum require that Ψ(y) and its derivative, 
y∂

∂ψ , be continuous across the interface. 

Thus,  
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Equation 7 

Solving Equation 7 for r, the reflection amplitude of a single interface between two 
media of infinite extent, gives: 
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from which the reflectivity of a single interface is obtained: 
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Equation 9 

As an example to illustrate application of Equation 9, we consider the case of an 
unpolarized neutron beam reflecting from a perfectly smooth silicon substrate 
(surrounded by air). The neutron scattering length density for Si is ρSi = 2.07 x10-6 Å-2 
(obtained from the entries listed in Table 1), and the depth dependence of the scattering 
length density profile for the sample is shown in Figure 3(a).  The reflectivity versus Q⊥ 
[Figure 3(b)] is calculated using Equation 9.  The position of the critical edge, Qc, is 
determined by the condition n = 0, i.e., SicQ πρ4= . 
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Figure 3 (a) Unpolarized neutron scattering length density profile of a perfect interface between air 
and a silicon substrate (inset).  (b) The calculated reflectivity for the interface (a) is shown by the 
solid curve.  The dashed curve represents a reflectivity curve calculated using the Born 
approximation (see text) and varies as Q⊥

-4 normalized to 0.9 times the solid curve at Q⊥ = 0.2Å-1 (see 
text). 

The dynamical calculation of the silicon substrate reflectivity [solid curve, Figure 
3(b)] in the region of Q⊥ ~ 0.1 Å-1 is similar to that obtained using the Born 
approximation (i.e., the kinematical case, dashed curve) from which the reflectivity is 
equated to the Fourier transform of the scattering length density profile: 
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Equation 10 

 However, for smaller values of Q⊥ the two reflectivity curves diverge.  
In the large Q⊥ regime, the decay of the curve scales as Q .  This decay, called 

the Fresnel decay [6], is a property of reflection from a planar surface, and thus contains 
little information leading to a better understanding of the spatial representation of matter 
beneath the surface.   However, the Fresnel decay rapidly diminishes the reflected 
neutron beam intensity until it can become swamped by external sources of background, 
including incoherent scattering from the substrate.   

4−
⊥

Theoretical Example 2: Reflection from perfectly flat stratified media 
For the case of reflection from a single perfect interface, there is little additional 

information that can be obtained beyond that provided by the position of the critical edge 
(surface roughness can also be measured—a topic discussed later).  More interesting and 
realistic cases involve reflection from stratified media.  In these cases, the scattering 
length density is not constant with depth, and indeed abrupt changes of the scattering 
length density, such as those produced by buried interfaces, modulate the reflectivity.   

Now consider the representation of a stratified sample in Figure 4 one depicting 
reflection of a neutron beam from a perfect interface formed by the boundary between air 

 11



and the surface of a thin film with thickness ∆ that is in contact with a smooth Si 
substrate of infinite thickness. 

 
Figure 4 Schematic diagram showing the wavevectors in a stratified medium.  The thickness of the 
thin film is ∆. 

 The wave functions in the different media are: 
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Equation 11 

Again Schrödinger’s equation is solved yielding a matrix equation from which the 
reflection and transmission amplitudes, r and t, can be obtained: 
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Equation 12 represents two simultaneous equations that can be solved to obtain r.  (Note, 
Equation 7 is recovered for the case of a single (air/substrate) interface for the case of ∆ = 
0.) 
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Equation 14 

To calculate a reflectivity curve, a value of Q⊥ is chosen from which k0 (= Q⊥/2, a 
real quantity) is obtained.  Next, the ⊥-components of the wavevector in Medium 1 and 
Medium 2 are calculated (using Equation 14) from which the reflection amplitudes for a 
pair of interfaces are obtained.  The reflection amplitudes for an ensemble of interfaces 
(in this case two, see Equation 14), r, is related to the reflection amplitudes of each 
interface, r01 and r12 (here, the amplitude of the wave reflected by the interface between 
Medium m and Medium n is called rmn), in the ensemble after combination with a phase 
factor, , as appropriate (the wave reflected by the interface between Medium 1 and 
Medium 2 is out of phase by the path length 2∆ with respect to the wave reflected by the 
interface between Medium 0 and Medium 1).  This procedure was performed to obtain 
the reflectivity curve (Figure 5) for a sample consisting of a 20 nm thick perfectly flat 
layer of material with the nuclear scattering length density of Fe on a perfect Si substrate. 
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Figure 5 (a) The nuclear scattering length density profile of a perfect thin iron film on silicon (inset).  
(b)The reflectivity of the sample is shown as the solid curve.  The reflectivities of a silicon substrate 
(dotted curve) and a substrate with the nuclear scattering length density of iron (dashed curve) are 
shown for comparison. 

The most notable feature of the solid curve [Figure 5(b)] is the oscillation of the 
reflectivity.  The period of the oscillation in the kinematical limit (far from the critical 
edge where dynamic effects are most pronounced) is approximately equal to 2π/∆.   The 
amplitude of the oscillation is related to the contrast or difference between the scattering 
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length densities of the iron film and silicon substrate.  A second notable feature is the 
position of the critical edge, which for the 20 nm Fe/Si sample still occurs at a position 
coinciding with that of the silicon substrate and not at the position for an iron substrate 
[compare the dotted and dashed curves in Figure 5(b)].  Unlike the case for X-ray 
reflectometry, in which only a couple of nanometers of material is sufficient to be 
opaque, and thus create a well-defined critical edge, the critical edge for neutron 
reflectivity is often determined by the sample substrate, and not the thin film, owing to 
the fact that a neutron beam is a highly penetrating probe.   
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Figure 6 Comparison of reflectivity curves from Fe films with different thicknesses.  The difference 
of 3% in thickness would be easily resolved. 

One strength of reflectometry is its ability to measure layer thickness with very 
high precision and accuracy (for a discussion of the distinction see Ref. [32]).  An 
illustrative example is to compare the calculated reflectivity curves for iron films of 20.0 
nm and 20.6 nm thickness corresponding to a 3% change in film thickness (Figure 6).  
The shift between the reflectivity curves at large wavevector transfer is easily 
distinguished, because the resolvable wavevector transfer is smaller than the shift.  For 
small scattering angles, the resolution of a reflectometer, δQ/Q is approximately given 
by: 
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The first term is determined by a combination of factors including sample size 
and the dimensions of slits that collimate the incoming neutron beam.  For glancing 
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angles of incidence (typically less than 5°), δθ/θ is of order 2% (root-mean-square). The 
second term is determined by how well the wavelength of the incident neutron beam is 
measured.  For situations in which a graphite monochromator selects the wavelength (as 
used for example at a nuclear reactor), δλ/λ is typically 1 to 2% (rms).  For situations in 
which the time-of-flight technique measures neutron wavelength (as used for example at 
a short pulsed neutron source) δλ/λ is typically 0.2% (rms).  So, with little effort, the 
resolution of a reflectometer in δQ/Q can be made less than 3% (rms).  Consequently, the 
change of fringe phase, which is about 3% for the case illustrated in Figure 6, can be 
readily measured.  

In contrast to measuring sub-nanometer changes in film thickness, detection of a 
single sub-nanometer thick film is considerably more challenging.  The Fresnel decay of 
the reflectivity restricts the degree to which perturbations in the scattering length density 
profile over thin layers can be measured. Let Qmax be the maximum value of Q⊥ that can 
be measured before the reflectivity, Rmin, is approximately equal to the instrumental 
background. Thin films having thickness ∆ > 2π/Qmax can perturb the reflectivity (at 
Qmax) by superimposing oscillations on the Fresnel decay.  In principle, by measuring the 
period and amplitude of the oscillations, information about the thickness of the thin film 
and its composition can be inferred.  On the other hand, for films with thickness ∆ < 
2π/Qmax the perturbation to the reflectivity might well be missed on account that the first 
pair of fringe maximum and minimum occur at wavevector transfer so large that the 
intensity of the reflected beam is below Rmin (in other words, the oscillations of the 
reflectivity curve might be swamped by instrumental background).  

Neutron reflectivity has been measured to values of Rmin = 10-8 under ideal 
conditions. In these conditions, Qmax might be on order of 0.3 Å-1, so detection of films as 
thin as 2 nm might be possible.   However, most experiments are not conducted under 
ideal circumstances.  For example, experiments usually involve sample environment 
equipment, e.g., cryostats etc., or samples that are either not perfectly smooth or are 
themselves sources of incoherent scattering.  In these situations neutron reflectivity 
measurements to less than 10-7 are often not achievable. 

Theoretical Example 3: Reflection from “real-world” stratified media 
The first two examples of perfect interfaces illustrate the importance of the critical 

edge (providing a means to place the reflectivity on an absolute scale), fringe period 
(related to layer thickness) and fringe amplitude (related to change of, or contrast 
between, scattering length density across an interface).   Since real systems can be less 
than perfect, we consider the case of rough or diffused interfaces.  This case serves to 
show how reflectometry can be a useful tool to study systems that are imperfect (indeed 
reflectometry provides a useful measure of imperfection).   

Consider the case where the diffusion of Fe and Si across the Fe/Si interface in 
the previous example obeys Fick’s second law [33].  We further assume the characteristic 
diffusion length, σ, of Fe into the Si matrix is the same as Si into the Fe matrix (though 
this assumption is unlikely to be correct).  In this case, the concentrations of Fe and Si 
with depth (in units of atoms/Å3) are given by: 
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Equation 16 

After substitution of Equation 16 into Equation 9, and using the appropriate 
values of the neutron scattering lengths and densities for Fe and Si (see Table 1), the 
neutron scattering length density profile is obtained: 
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Equation 17 

The variation of the neutron scattering length density across the interface is 
represented by an error function connecting the scattering length densities of pure Fe and 

pure Si.  We note the derivative of the error function with argument 
σ2
∆−y  is 

proportional to a Gaussian function with root-mean-square width of σ [34].  The 
scattering length density profile for a 20 nm thick Fe layer bounded by a diffuse air/Fe 
surface (i.e., a rough surface) and diffuse Fe/Si interface with characteristic widths of σ = 
5 Å is shown in Figure 7(a).  The thickness of the film is the distance between the centers 
of the two Gaussian functions. 
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Figure 7 (a) Representation of the Fe/Si sample with rough and/or diffuse interfaces. (b) The 
derivative of the scattering length density profiles consisting of a pair of Gaussian profiles from 
which (a) is obtained upon integration. 

While the scattering length density profile in Figure 7(a) can be obtained using 
Equation 17, in fact the profile shown in the figure was obtained by integrating the 
derivative of the scattering length density profile with respect to depth (y-coordinate) 
[Figure 7(b)].  The peaks in Figure 7(b) are Gaussian peaks whose positions, widths and 
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integrals correspond to the positions, diffusion or roughness widths, and contrast across 
the interfaces, respectively. For example, the integral of the peak at y = 0 Å in Figure 7(b) 
is ρFe – ρair = 8x10-6 Å-2.  One motivation for constructing the derivative of the scattering 
length density profile (and then integrating it) is to allow the possibility for interfaces to 
be close.  By close, we mean the thickness of one or both layers on either side of an 
interface is thinner than the rms width, σ, attributed to the interface.  While arguments 
can be made whether such a situation is physically meaningful, mathematically the 
situation corresponds to one where tails of adjacent Gaussian peaks overlap, and certainly 
such a profile can be integrated.  When the tails of two Gaussian peaks overlap 
(significantly), the profile obtained from integrating the derivative profile will not yield 
an error function variation between the two interfaces, but may nevertheless produce a 
calculated reflectivity curve that closely resembles a measured reflectivity.   It should be 
emphasized that only in situations where σmn<< ∆m and σmn << ∆n, should the value of 
σmn be interpreted as an interface width and ∆ as a layer thickness. Otherwise, the 
parameters of a density profile ones that yield a well-fitting reflectivity curve, have 
little meaning, though the density profile might accurately represent the scattering 
potential of the system. 

The process for calculating the reflectivity of the “roughened” sample first 
involves approximating the continuous profile in Figure 7 by a discrete sequence of thin 
slabs of width δ with step-like changes in scattering length density.  The choice of δ, i.e., 
the thickness over which ρ is constant, is made such that δ << 2 π/Qmax a relation 
assuring the Sampling Theorem of Fourier analysis [35] is satisfied.  An example of such 
an approximation for δ = 2 Å is shown in Figure 8.  
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Figure 8 (a) Variation of the scattering length density profile of the air/Fe interface for σ = 5 Å is 
shown.  (b) Approximation of the continuous function in (a) using discrete steps. 

There are two common approaches to calculate the (dynamical) reflectivity using 
the approximate scattering length density profile shown in Figure 8(a).  The first 
approach, which is suitable for calculating the scattering length density profiles from 
scalar potentials (Equation 3 is an example of a scalar potential) is to use Equation 14 to 
calculate the reflection amplitude of the interface between the bottom-most thin slab and 
the infinitely thick substrate.  Let the reflection amplitude of this interface be rmn 
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(bounded by Medium m = n-1 and Medium n—the substrate).  Then, the reflection 
amplitude of the next higher interface the m-1m-th interface, is computed using rmn as 
the reflection amplitude of the phase-shifted term in Equation 14.  This equation is 
applied recursively (as indicated in Figure 8(b) for the uv-th interface) until the top 
interface (the air/sample interface) is reached.  Calculation of the reflectivity by 
recursively applying Equation 14 (for a particular Q⊥) is required in order to properly 
account for dynamical scattering of the neutron beam by the sample surface at glancing 
angles.  In other words, were the Born approximation a good representation of the 
scattering, then a recursive calculation to obtain the reflectivity curve would not be 
necessary.  The recursive calculation is often referred to as the Parratt formalism [4]. 

The second approach to calculate the reflectivity curve is to generalize the matrix 
relation (Equation 12) for an arbitrary number of thin slabs, and then to solve the 
simultaneous equations to obtain the reflection amplitude of the ensemble (i.e., the entire 
sample).  The second approach is one that can be used to calculate the reflection 
amplitude of a sample that might be represented by a scalar or vector potential (an 
example of a vector potential is one that includes the vector magnetization of a sample).  
The matrix relation is generalized to the case of an any number of thin slabs as follows 
(for a detailed derivation see Ref. [28]):  
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Equation 18 

The subscript “j” in Equation 18 represents the j-th medium or slab.  So, for example, kj 
is the magnitude of the ⊥-component of the wavevector in the j-th medium (see Equation 
14), and δj is the thickness of the medium over which the scattering length density is 
considered constant [2 Å for the case of Figure 8(b)].    

The reflectivity calculated for a 20 nm thick Fe film with roughened interfaces 
[whose scattering length density profile is shown in Figure 8(b)] is the solid curve in 
Figure 9.  The case for the ideal Fe film [whose scattering length density profile is shown 
in Figure 5(b)] is the dashed curve in the figure.   
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Figure 9 The influence of rough or diffuse interfaces is to attenuate the reflectivity with Q⊥.  The 
“rough” and “N-C” (computed using the Nevot and Croce relation)  curves are essentially identical. 

The specular reflectivity curve of a sample with rough or diffuse interfaces is 
attenuated more so than that of a smooth sample. The attenuation increases with Q⊥.  In 
fact, for the case of a single interface, Nevot and Croce [36] have analytically shown that 
the reflection amplitude of a single rough interface, rr, having short length-scale 
roughness (Q⊥σ << 1) is related to that of the ideal interface, ri, by the relation: 

( )2/exp 2σt
ir QQrr ⊥⊥=  

Equation 19 

where  (= ktQ⊥ 1f – k1i) is the wavevector transfer in the sample. As the kinematical limit 
is approached (i.e., ), the attenuation factor is identical to a “static” Debye-
Waller factor [37] (application of Equation 19 to the “smooth” curve in Figure 9 yields 
the red “N-C” curve).  An important consequence of this observation is that interface 
roughness (or diffusion) will further limit the accessible region of wavevector transfer, 
and consequently the sensitivity of reflectometry to changes of the scattering length 
density profile over thin layers.  The attenuation of the reflectivity with roughness is a 
strong function of σ and Q

⊥⊥ → QQt

⊥; thus, more information can be extracted from samples with 
smooth interfaces than those with rough interfaces (although the physics of rough 
interfaces is often interesting!).  For many experiments, useful information can be 
obtained from samples with (rms) interface roughness on the order of 10 Å, whereas, for 
samples with interface roughness of 20+ Å, success of the experiment may be hopelessly 
compromised. 

A second important consequence of rough interfaces is the redistribution of 
intensity from the specular reflectivity into diffuse scattering.  Diffuse scattering is most 
easily recognized as elevated levels of intensity in off-specular directions, but diffuse 
scattering from rough interfaces is often peaked in the specular direction (much like how 
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thermal diffuse scattering can be concentrated at Bragg reflections [37]).  Thus, the 
intensity of the neutron (or X-ray) beam reflected into the specular direction contains the 
specular reflectivity (which provides information about the depth dependence of the 
scattering potential averaged over the sample’s lateral dimensions), and diffuse scattering 
(which provides information about the correlation of roughness across the lateral 
dimensions of the sample, and is often modulated with Q⊥ in the same manner the 
specular reflectivity is modulated).    Estimates of the intensity of the diffuse scattering 
that is coincident with the specular reflectivity can be interpolated from measurements of 
the off-specular scattering on either side of the specular direction; obtained, for example, 
by rocking the sample or detector in a manner such that αi ≠ αf.  Removal of the diffuse 
scattering component ensures that analysis of the remaining intensity is one of the 
specular reflectivity (for which most reflectivity fitting packages are intended).  Failure to 
remove the diffuse scattering, may lead to an underestimate of surface or interface 
roughness. 

The previous three theoretical examples have illustrated useful concepts and 
interpretations of reflectivity curves.  The measurements and their interpretations are 
summarized in Error! Not a valid bookmark self-reference.. 
Table 2 Listing of measurements and the information yielded by the measurements. 

Measurement feature Information obtained from a sample of cm2 or so size 
Position of critical edge, Qc Nuclear (chemical) composition of the neutron-optically 

thick part of the sample, often the substrate. 
Intensity for Q < Qc Unit reflectivity provides a means of normalization to an 

absolute scale. 
Periodicity of the fringes Provides measurement of layer thickness(es).  Thickness 

measurement with uncertainty of 3% is routinely 
achieved.  Thickness measurement to less than 1 nm can 
be achieved. 

Amplitude of the fringes Nuclear (chemical) contrast across an interface. 
Attenuation of the reflectivity Roughness of an interface(s) or diffusion across an 

interface(s).  Attenuation of the reflectivity provide 
usually establishes a lower limit (typically of order 1-2 
nm) of the sensitivity of reflectometry to detect thin 
layers. 

Reflectometry with polarized neutron beams 
In the previous section, neutron reflectometry was discussed in terms of the 

reflection of neutron beams from scattering potentials that are purely nuclear in origin.  
Since the neutron possesses an intrinsic magnetic moment and spin, the scattering 
potential may be spin dependent.  There are two reasons that the interaction between a 
neutron and matter may depend on the neutron’s spin. In some scattering processes (e.g., 
incoherent scattering of neutrons by hydrogen), the nuclear spin of an atom can interact 
with the spin of a neutron.  On other occasions, the nuclei in a material from which the 
neutron scatters, may possess net spin and be polarized.   Examples include spin 
polarized 3He nuclei [38], or spin polarized Ga or As nuclei in the presence of a magnetic 
material [39].  The spin dependence of the potential for these examples involves two 
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neutron scattering lengths, b+ and b-, where the sign of the term indicates whether the 
spin of the nuclei is parallel or anti-parallel to the laboratory magnetic field of reference 
(see Figure 1), which will later be identified with the polarization axis of the neutron 
beam. 

 
Figure 10 Diagram of a reflection experiment in which the sample is immersed in a magnetic field. 

A commonly encountered second case involves the interaction of the neutron spin 
with atomic magnetism or other sources of magnetic induction.  The modification to the 
scattering potential (including the nuclear potential) is given by: 

B⋅=+= µmnmn VVVV  

Equation 20 

Here,  is the (spatially dependent) magnetic induction vector, and B µ  is the 
magnetic moment of the neutron, where σµµ n= , µn = -1.913 µN (the negative sign 
indicates that the neutron moment and its spin are anti-parallel), and σ is a linear 
combination of the (2 x 2) Pauli matrices [29] directed along each of the three orthogonal 
spatial axes with the magnetic field direction taken to lie along the -axis (Figure 10).  
The “ ”-sign in Equation 20 is taken to be negative (positive) if the neutron spin is 
parallel (anti-parallel) to the laboratory field of reference (

ẑ
m

H  in Figure 10).  Since µn is 
negative, the quantity – µnB is positive, thus, adding to a normally positive nuclear 
scattering length—one for a repulsive potential (Mn, however, is an example of an atom 
with a negative nuclear scattering length—an attractive potential). Fundamentally, the 
neutron spin interacts with magnetic induction, , so a materials-property that gives rise 
to , e.g., orbital and/or spin moments of atoms, or accumulation of spin in electronic 
devices, in principle can affect the neutron scattering process.  The fact that the neutron 
spin interacts with magnetic induction and not magnetic field [40, 41, 42, 43] is fortunate, 
since were this not the case neutron scattering might not be a useful a tool in the study of 
magnetism. 

B
B

 Expressing the scattering potential V in matrix notation, we obtain [28]: 
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Equation 21 

The elements of the matrices are understood to depend on position, i.e., the nuclear 
scattering length density term, ρn = ρn(y), etc. (dependence on x and z is also possible to 
observe with off-specular reflectometry).  It is important to recognize that while most 
often the nuclear scattering potential outside of the sample is zero, ρn = 0, this is not 
necessarily the case for the magnetic induction.  For example, in a polarized neutron 
reflectometry experiment, some magnetic field (as little as a couple Oe may be needed) is 
nearly always applied to the sample, in order to maintain the polarization of the neutron 
beam.  Since neutron reflection occurs across interfaces with different scattering length 
densities (nuclear or magnetic), the field applied to the sample and the field inside the 
sample being the same do not yield contrast across the interface.  Setting MHB += 0µ , 
where  is the intensity of magnetization, and for fields applied along , Equation 21 
can be rewritten as: 
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Equation 22 

Equation 22 is a relation for the potential difference, ( )yVδ , between the sample and the 
surrounding medium (here, assumed to be air, but for cases in which the sample is not 
surrounded by air, the nuclear scattering length density of the surrounding medium must 
also be removed from ρn). The neutron magnetic scattering length density can be defined 
in terms similar to those used to define the neutron nuclear scattering length density 
(Equation 4). 
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Equation 23 

The units of the magnetic scattering length, p , are Å.  For the magnetic moment 
per formula unit, µ , expressed in units of µB, C = 2.645 x10-5 ÅµB

-1.  If, rather, the 
volume magnetization density, m , is known in units of Tesla, then = 2.9109 x10C ′ -5/4π 
Å-2T-1; otherwise, for  in units of emu/cmm 3, C ′ = 2.853 x10-9 Å-2cm3/emu. Substituting 
Equation 23 into Equation 22 yields: 
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Finally, we associate the so-called non-spin-flip, ρ++  and ρ--, and spin-flip 
scattering potentials, ρ+-  and ρ-+, with the matrix elements in Equation 24.  
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Equation 25 

The “+” (“-“) sign is for the neutron spin parallel (anti-parallel) to the applied 
field, so the positive magnetic scattering potential adds to the normally positive 
(repulsive) nuclear scattering potential.  So, for example, ρ++ is the element of the 
scattering potential attributed to the scattering of an incident neutron with spin-up that 
does not change the orientation of the neutron spin with respect to the magnetic field. 
Likewise, ρ+- is the element of the scattering potential attributed to the scattering of an 
incident neutron that changes its spin from up to down, and so on. 

We now desire a solution to Schrödinger’s equationone that takes into account 
the spin dependence of the scattering potential (Equation 25) and the spin dependence of 
the neutron wave function: 
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Equation 26 

The value of k± is for the ⊥-component (or y-component in Figure 10) of the 
wavevector for the different neutron spin states.  The spin dependence of k± arises from 
the energy dependence of the neutron spin in the magnetic field.  In the field, the 
refractive index becomes spin-dependent (i.e., birefringent). 
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Equation 27 

The spin dependence of the incident neutron wave function contained in U+ and U- is 
determined by the polarization of the incident neutron beam.   

Theoretical Example 4: Reflection of a polarized neutron beam from a 
magnetic film 

In this example, we consider the reflection of a polarized neutron beam from a 
magnetic thin film in which the direction of magnetic induction is uniform.  This example 
illustrates how the Parratt formalism developed earlier for unpolarized neutron reflection 
can be straightforwardly applied to a (saturated) magnetic thin film.  Since the direction 
of magnetic induction is assumed to be parallel to the applied field, and the direction is 
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uniform throughout the film (though the magnitude of the induction need not be 
uniform), the off-diagonal entries in the matrix of Equation 25 are zero.  We now imagine 
performing an experiment involving two measurements of the sample reflectivity; first 
with spin-up neutrons (so U+ = 1 and U- = 0), and then later with spin-down neutrons (so 
U+ = 0 and U- = 1).  A device called a spin-flipper (discussed later) flips the neutron spins 
from one state to the other.  Equation 18 is easily generalized to account for the spin 
dependence of the neutron scattering potential [28]. 
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Equation 28 

In the previous example of a thin Fe layer on Si, we had considered the 20 nm 
thick layer to be a non-magnetic material with the nuclear scattering length density of Fe.  
Now, we consider the Fe to be fully saturated with magnetization parallel to the field as 
shown in Figure 10.  The magnetic moment of an Fe atom is µFe = 2.219 µB, so the 
neutron magnetic scattering length density is  Å61097.4 −== xCN FeFem µρ -2 (Table 1).   
The scattering length density profiles for spin-up and spin-down neutrons are shown in 
Figure 11(a), as is the profile of the nuclear scattering length density [Figure 7(a)] alone 
for the sake of comparison. Depending upon whether the polarization of the neutron 
beam is parallel or anti-parallel to H , ρm either adds or subtracts from ρn.  The 
reflectivities for spin-up neutrons, R++ [for which the blue curve in Figure 11(a) is 
appropriate], and spin-down neutrons, R--, [for which the red curve in Figure 11(a) is 
appropriate] are shown in Figure 11(b).  The dotted curve in Figure 11(b) is the 
reflectivity of a non-magnetic film with the nuclear scattering length density of Fe 
(Figure 7), and would not be measured from a magnetized film of Fe with polarized 
neutron beams (having a polarization axis in the sample plane and perpendicular to Q).  
In this example, the splitting between the R++ and R-- is a measure of the depth profile of 
the sample magnetization projected onto the applied field direction. 
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Figure 11 (a) Bifurcation of the magnetic scattering length densities profiles depending upon whether 
the neutron spin is parallel (++, blue curve) or anti-parallel (--, red curve) to the direction of the 
applied magnetic field.  The dotted curve is the nuclear scattering length density profile.  (b)  The R++ 
and R-- reflectivity of the sample is shown as the blue and red curves, respectively.  The dashed curve 
is the reflectivity curve for the case of a film with the nuclear scattering length density of Fe (and not 
magnetic). 

Influence of imperfect polarization on the reflectivity  
In the preceding discussions, reflectivity curves were calculated for neutron 

beams that were assumed to contain only spin-up neutrons or spin-down neutrons.  In 
other words the neutron beams were ideally polarized.  In practice, the polarization of a 
neutron beam, 

−+

−+

+
−

=
II
IIP  

Equation 29 

where I+ and I,- represent the numbers or fractions of spin-up and spin-down neutrons, 
respectively, is not 100%.  Typically, polarizations of order 90+ % are available for 
reflectometry experiments. 

In order to produce a polarized neutron beam, polarization devices (discussed 
later) are inserted into the beam line before and sometimes after the sample.  A 
polarization device acts to suppress one spin state by either absorbing the undesired spin 
state (such a device is often called a polarization filter), or by spatially separating the two 
spin states through reflection from magnetized materials.  Nearly all polarized neutron 
beams contain some fraction of undesired spins.  Assume the desired spin state is the 
spin-up state.  The contamination of the polarized neutron beam is attributed to spin-
down neutrons.  The polarization of the neutron beam approaches 100%, when the ratio, 

called the flipping ratio 
−

+=
I
IF , of desired neutron spins to undesired neutrons spins 

becomes large, in fact:  
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Equation 30 

Since the transmission of a neutron beam through polarizing supermirrors is 
typically reduced by about 30% due to absorption of the beam by the Si substrates and Co 
in the coatings, experimentalists are best served by neutron beams with just enough 
polarization to obtain the data needed to solve a problem.  Somewhat counter-intuitively, 
it may sometimes be more advantageous to study highly magnetic materials with higher 
neutron polarizations than used for materials that are only slightly magnetic.  To 
understand this point, we assume that rather than using the perfectly polarized neutron 
beam in Theoretical Example 4, we use one having a flipping ratio of 10 (i.e., 1 in 10 
neutrons has the wrong spin state, P = 82%).  The as-measured spin-up reflectivity will 
be composed of 0.9R++ [Figure 11(b)] and 0.1R-- [Figure 11(b)], which hardly changes 
the result (compare the solid and dashed blue curves in Figure 12).  However, since the 
spin-up reflectivity is so much larger than the spin-down reflectivity (in this example), 
the as-measured spin-down reflectivity will consist of 0.1R++  (a large source of 
contamination) and 0.9R-- (compare the solid and dashed red curves in Figure 12).  
Failure to account for imperfection of the polarized neutron beam would lead one to 
mistakenly conclude that the Fe film was less magnetic than it actually is.  Provided the 
polarization of the neutron instrument is known, the true reflectivity curves can be 
obtained from reflectivity measurements using neutron beams with less than 100% 
polarization [44]. 
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Figure 12  Reflectivity curves calculated for an ideally polarized neutron beam (dashed curves) are 
compared to those calculated for a neutron beam with 82% polarization (solid curves).  The large 
spin-up reflectivity (blue curve) is hardly affected by a poorly polarized neutron beam.  On the other 
hand, the contamination in the poorly polarized neutron beam greatly perturbs the much weaker 
spin-down reflectivity (red curve), because the contamination when measuring spin-down is spin-up 
and the spin-up reflectivity is much larger than the spin-down reflectivity. 

In contrast, for the case of a material that is only weakly magnetic, e.g., a 
magnetic semiconductor with magnetization ~30 emu/cm3, R++ and R-- will be little 
different, so the contamination posed by having 1/10th of the wrong spin state in the as-
measured reflectivity might be negligible.  In this situation, a relatively poorly polarized 
neutron beam might be preferred over a highly polarized neutron beam, especially if the 
intensity of the poorly polarized neutron beam is larger than that of the highly polarized 
beam.  

“Vector” magnetometry with polarized neutron beams 
In the previous discussions, the neutron spin and magnetic induction have been 

treated as if they were always parallel (or anti-parallel) to the neutron spin direction.  
However, this constraint does not always exist.  For example, a material with strong 
uniaxial anisotropy could be oriented with  at an angle of φ to M H (Figure 13).  
Classically, when a neutron whose spin enters a region in which its spin is not parallel to 
the induction, the neutron spin begins to precess.  Depending upon the time the neutron 
spends in this region and the strength of the induction, the neutron spin may flip 180° 
the intentional rotation of a neutron spin by 180° is the basis for operation of a so called 
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Mezei spin-flipper [45].  Likewise, the magnetization of a material can rotate the spin of 
a neutron such that a beam with one polarization scatters from the sample with 
diminished polarization, i.e., some of the spin-up neutrons may be flipped to spin-
down—so-called spin-flip scattering.  In this situation, the scattering potential, ( )zVδ , is 
not simply birefringent: in other words the off-diagonal elements in Equation 25 are non-
zero.    

 
Figure 13 Schematic diagram showing (top) a spin-up polarized neutron beam reflecting from a 
sample with magnetic induction at an angle of φ from the applied field.  The reflected beam has two 
components—the (R++) non-spin-flip and (R+-) reflectivities.  (lower) The case is shown when the 
polarization of the incident neutron beam is spin-down.  

 
For the geometry of the neutron reflectometry experiment shown in Figure 13, a 

further simplification to the off-diagonal elements of Equation 22 can be made.  One of 
Maxwell’s equations (specifically 0=⋅∇ B  [46]) requires the out-of-plane component of 

 across the interface to be continuous, so the component of  parallel to Q  or  will 
not yield a change in contrast across the interface; therefore, ρ
B B ŷ

+- = ρ-+ = ρmx ≡ ρSF.  The 
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important consequence of the dipolar interaction between neutron and magnetic moments 
is that magnetic scattering of the neutron is only produced by the component of the 
magnetization perpendicular to wavevector transfer.  In the case of a (specular) neutron 
reflection experiment (Figure 13), this requirement means that spin-dependence of the 
neutron reflectivity arises from the components of the sample magnetization projected 
onto the reflection (or sample) plane.  (Other components of the sample magnetization 
might be accessible to examination using less conventional choices for the polarization 
axis of the neutron beam.) 

Theoretical Example 5: Reflection from a medium with arbitrary 
direction of magnetization in the plane of the sample  

We now calculate the scattering from the Fe film for the case when the Fe 
magnetization is rotated through an angle φ about the surface normal from the applied 
field direction (see Figure 13).   In order to account for the possibility that the sample 
changes the spin state of a neutron, a generalization of Equation 28 to include spin-flip 
scattering, is required [19, 20, 28].  
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Equation 31 

where the elements of jA  are: 
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Equation 32 

 
To calculate the four neutron spin reflectivities, R++, R+-, R-+ and R--, the nuclear 

(ρn) and magnetic (ρm, a vector) scattering length density profiles for the sample are 
computed.  Examples of these profiles are shown in Figure 14, where 

( )xzmC Fem ˆsinˆcos φφ +′=ρ .   
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Next, we assume the sample is illuminated by a spin-up polarized neutron beam, 
so I+ = 1 and I- = 0, and use Equation 31 to compute R++ and R+- (≡ |r+|2 and |r-|2; the 
probabilities that a neutron with spin-up is reflected with spin-up or spin-down, 
respectively).   Then, the calculation is repeated for a spin-down polarized neutron beam 
(I+ = 0 and I- = 1) to obtain R-+ and R-- (≡ |r+|2 and |r-|2; the probabilities that a neutron 
with spin-down is reflected with spin-up or spin-down, respectively). The result is plotted 

in Figure 15, where 
2

+−−+ +
=

RRR SF , for the cases  (a) φ = 90° and (b) φ = 45°.  For the 

case φ = 90°, the net magnetization of the sample along the applied field is zero, so there 
is no splitting between the two non-spin-flip cross-sections (and a strong signal in the 
spin-flip cross-section).  On the other hand, for φ = 45°, the net magnetization of the 
sample along the applied field is non-zero, so splitting between R++ and R-- is observed 
along with a lower magnitude for RSF . 
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Figure 14  Plot of the nuclear (a) and magnetic (b) scattering length densities profiles.  Inset: The 
angle about the surface normal of the magnetization from the applied field is 90°. 
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Figure 15 Polarized neutron reflectivity curves for the Fe/Si sample (inset) with Fe magnetization 
rotated (a) φ = 90° and (b) φ = 45° from the applied field and polarization axis of the neutron beam. 

 31



A qualitative (and intuitive) understanding of “vector” magnetometry 
An intuitive understanding of spin-dependent reflection is most easily obtained by 

considering the kinematical equations that describe reflection, which so far has been 
treated using the dynamical (exact) formalism.  By kinematical, we mean that effects 
such as the evanescence of the wave function below the critical edge, which greatly 
perturb the wave function inside the sample, are neglected.  These effects are neglected 
when the transmitted wave function in Equation 1 is replaced with the incident wave 
function.  Within the Born approximation, the spin-dependent reflection amplitudes for 
the scattering geometry shown in Figure 13 are [28]: 
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Equation 33 

The reflectivities for the non-spin-flip processes are a sum of the squares of the 
nuclear and magnetic structure factors (given in Equation 33) plus a term resulting from 
the interference between nuclear and magnetic scattering.  The interference term is 
observed with polarized neutron beams.  The spin-flip reflectivity is purely magnetic in 
origin.  Note for the special case where φ = 90°, as can be realized for samples with 
uniaxial anisotropy, the non-spin-flip reflectivities are purely nuclear (or chemical) in 
origin.  In this special case, the magnetic and chemical profiles of the sample can be 
isolated from one another. By measuring both the non-spin-flip and spin-flip reflectivities  
as a function of Q⊥, Equation 33 suggests that the variation of the magnetization vector, 
in amplitude and direction in the sample plane, can be obtained as a function of depth.  
This capability is an important reason why polarized neutron reflectometry complements 
conventional vector magnetometry, which is a technique that measures the net (or 
average) magnetization vector of a sample.   

A second important example of the power of polarized neutron reflectometry is 
for detecting and isolating the magnetism of weakly magnetic materials from that of 
strongly magnetic materials through analysis of the Fourier components of the 
reflectivity. Situations in which this capability may be valuable include detecting coerced 
or proximal magnetism in materials that are normally non-magnetic in the bulk, e.g., Pd 
that becomes magnetic in proximity to Fe [47].  Polarized neutron reflectometry is also 
valuable in studies of weakly ferromagnetic thin films, e.g., (Ga, Mn)As [48], grown on 
substrates that contribute a strong diamagnetic or paramagnetic background to the signal 
measured in a conventional magnetometer. 

For studies of films whose magnetization does not change with depth, but instead 
the magnetization changes along the film plane, as realized for example in films 
composed of magnetic domains, the sizes of the magnetic domains in relation to the 
coherence of the neutron beam (which is typically microns in size) determine whether 
off-specular or diffuse scattering of the neutron beam, in addition to specular scattering, 
is observed.  Diffuse scattering can be observed when the lateral variation of the 
magnetization is small in comparison to the coherence of the neutron beam.  On the other 
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hand, if the domains are much bigger than the coherence of the beam, then information 
about the magnetism of the sample will be observed in the specular reflectivity. 

Consider reflection of a neutron beam from a single domain with uniform 
magnetization and having a lateral size that is large in comparison to the coherent region 
of the neutron beam.  In this example, the reflectivity of the domain is straightforwardly 
calculated using Equation 33. 
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Equation 34 

Using the relation between ρm and m provided by Equation 23 we resolve m into 
components parallel and perpendicular to the applied field such that φρ cos|| mm ∝  and 

φρ sinmm ∝⊥ , respectively.  Then, using Equation 34 we obtain a physical meaning for 
the difference (or splitting) between the non-spin-flip reflectivities, ∆NSF, and RSF. 
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Equation 35 

That is, the splitting between the non-spin-flip reflectivities is proportional to the 
projection of the domain magnetization onto the applied field, and the spin-flip 
reflectivity is proportional to the square of the domain magnetization perpendicular to the 
applied field.    

Owing to the fact that neutron scattering is a statistical probe of a sample’s 
potentially non-uniform distribution of magnetization, rather than a scanning probe of the 
magnetization at the atomic scale (which could be non-representative), there is an 
important complication to the interpretation of the neutron scattering results.  The 
complication stems from, as discussed earlier, whether the non-uniformity of 
magnetization varies on a length scale that is small or large compared to the coherent 
region [49] of the neutron beam.  If the fluctuations of magnetization are small compared 
to the coherent region of the neutron beam, then the reflectivity is obtained from the 
reflection amplitude of an ensemble of domains.  Depending upon the details of the 
fluctuations, the scattering may consist of specular and off-specular (or diffuse scattering) 
components.  On the other hand, if the fluctuations occur on a length scale larger than the 
coherent region of the neutron beam, then the reflectivity is the sum of the reflectivity of 
each component, and the reflectivity is specular.   

It is the second case, one composed of domains that are large in comparison to the 
coherent region of the neutron beam that is easiest to treat.  In this case, ||mNSF ∝∆  and 

2
⊥∝ mR SF

BA , where  denotes the average value of the ensemble of domains.  The first 

term, ∆NSF, provides a measure of the Fourier components of the net sample 
magnetization projected onto the applied field and is similar to the net magnetization of 
the sample as measured by a magnetometer (in a sense a magnetometer measures ∆NSF 
corresponding to Q⊥ = 0).  The second term contains qualitatively different information 
than that which can be measured by a vector magnetometer.  Specifically, RSF is a 
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measure of the mean square deviation of the magnetization away from the applied field.  
For the examples of magnetic domain distributions shown in Figure 16, the net sample 
magnetization in any direction is zero.  In this situation, a vector magnetometer would 
measure the zero-vector, yet, provided the domains are large in comparison to the 
coherence of the neutron beam, the mean square deviation of the magnetization away 
from the applied field is a (non-zero) quantity obtained from polarized neutron scattering 
as RSF [50].  Note, f1, f⊥ = f2 + f4, and f3 [Figure 16(left)] and φ [Figure 16(right)] can be 
chosen such that 2

⊥m is the same for both models, so polarized neutron reflectometry 
cannot distinguish between these two particular domain distributions; nevertheless, the 
technique does provide information about magnetic properties, e.g., anisotropy [51] that 
are related to 2

⊥m .   
Extreme cases of domain distributions—ones that yield no net magnetization 

along the applied field (as realized when the magnitude of the applied field is equal to the 
coercive field) are shown in Figure 17, along with the associated (unique) features of the 
specular reflectivity for the particular domain structure.  In the first case, the non-spin-
flip reflectivities would be superimposed with amplitudes that contain nuclear and 
magnetic contributions [the reflectivity would not be the same as the purely nuclear case 
shown in Figure 5(b)]. The period of the non-spin-flip reflectivities would be 2π/∆, and 
the spin-flip reflectivity would be zero.  In the second case, the non-spin-flip reflectivities 
would be purely nuclear in origin, and the spin-flip reflectivity would be non-zero with a 
period equal to the 2π/∆.  In the third case, the two non-spin-flip reflectivities would be 
different and have a period of 2π/(∆/2).  The spin-flip reflectivity would be zero for this 
case.  For the last case, the non-spin-flip reflectivities would be purely nuclear in origin 
(as in the second case) and the spin-flip reflectivity would be non-zero with a period of 
2π/(∆/2).   

 
Figure 16  Examples of magnetic domains with magnetization directed as shown by the arrows.  (a) 
In this closure domain model, fi, represents the area fraction of the i-th domain, and the 
magnetization of the material reverses by changing the value of fi. (b) In this model, the area 
fractions of the domains are equal and the magnetization of the material reverses as the angle 
between the magnetization and the applied field direction changes from 0 to 180°. 
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Figure 17  Four examples of a magnetic material whose net magnetizations along the applied field, H,  
(or any direction) are all zero (the volume fractions of red and blue domains are equal, and the 
domain sizes are assumed to be large in comparison to the coherent region of the neutron beam).   
The neutron scattering signature in the specular reflectivities from each model is unique. 

Description of a polarized neutron reflectometer 
Three essential requirements for any polarized neutron reflectometer are:  
(1) an a priori knowledge of the polarization of the neutron beam illuminating 

the sample;  
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(2) the capability to measure the intensity and polarization of the neutron beam 
reflected by a sample;  

(3) and the ability to make these measurements as a function of wavevector 
transfer parallel and perpendicular to the sample surface.   

The first feature requires a device to polarize the neutron beam (a polarizer) and to flip 
the neutron beam polarization (a spin-flipper). The second feature requires a neutron 
detector and a device(s) to flip and measure the neutron beam polarization after reflection 
from the sample. Finally, wavevector transfer is obtained from measurements of the 
neutron wavelength and the angle through which the neutron has been scattered. Angles 
are measured using slits to define the path of the neutron beam that is allowed to strike a 
neutron detector, or by using a position sensitive neutron detector. 

Preparation of the cold neutron beam for a reflectometer at a 
pulsed neutron source 

We briefly describe a reflectometer/diffractometer (Figure 18) designed for 
studies of magnetic materials at a source of pulsed neutrons. Sources of pulsed neutrons 
(e.g. LANSCE at Los Alamos National Laboratory) provide neutron pulses that are 
typically very short, on the order of 100-300 µs, and periodic—with periods ranging 
between τ ~ 10 - 100 ms.  

For neutron scattering measurements in the small-Q or large d-spacing regimes 
(neutron scattering measurements of magnetic materials are often in these regimes), 
neutrons with very low energies (long wavelengths) are desirable because the sine of the 

critical angle, 
π

λ
θ

4
sin c

c
Q

= , is proportional to neutron wavelength. Since the relative 

influence of systematic or alignment errors decreases with increasing angle, Q⊥ can be 
more accurately measured with long wavelength neutrons than with short wavelength 
neutrons.  Also, by measuring relevant values of Q⊥ at large angles, we can take 
advantage of the intrinsically large and divergent neutron beam (in comparison to X-ray 
beams which can be very small and highly collimated). Even though the wavelength of a 
cold neutron beam might be an order of magnitude larger than X-ray beams, the specular 
reflectivity is still measured through angles on order of 1° (as in X-ray reflectometry) 
because Qc probed with neutrons is typically an order of magnitude smaller than that for 
X-rays.  Cold neutron beams are obtained by viewing the neutron source through a 
material like l-H2 that absorbs neutron energy through collisions with hydrogen atoms.  
The so-called moderator changes the energy of the neutron beam from MeV to meV 
energies.  The spectrum of a cold neutron beam is shown in Figure 19. 

In order to preserve the intensity of a neutron beam, the beam may travel through 
a glass pipe, called a neutron guide, whose inside surfaces are coated with a highly 
reflecting material, e.g., 58Ni, to neutrons.  Neutrons striking the sides of the guide at 
sufficiently small wavevector transfer, i.e., Q⊥ < Qc, ( = 0.026 Å-1 for 58Ni) are reflected 
and stay confined within the guide.  The angular divergence of neutron trajectories 

emanating from the end of the guide is 
π

λ
α

4
2 c

c
Q

=2 ; thus, neutrons with trajectories 

within ±αc of the centerline of the neutron guide can, in principle, interact with a sample.  
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Note, the divergence of the neutron beam from a guide increases linearly with 
wavelength. 
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Figure 18 Schematic diagram of a polarized neutron reflectometer/diffractometer at a pulsed neutron source (LANSCE).   
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Figure 19 Neutron spectrum measured from a coupled l-H2 moderator (blue curve) without a 
cryostat and without polarization analysis and (red curve) with a cryostat and polarization analyzer 
inserted.  The spectrum is plotted for neutron events counted in wavelength increments of constant 
size.  The Be filter is mostly transparent above ~4 Å.  The decay of the spectrum with wavelength is 
reminiscent of that from a black-body radiator. 

While the moderator greatly reduces the energy of the neutron beam, there still 
remain some highly energetic neutrons that may interact with components of the 
instrument and consequently lose energy through these interactions.  Thermalization of 
energetic neutrons is an important source of instrumental background.  In order to 
suppress this source of background, a filter is required, i.e., a device that is nearly opaque 
to high energy neutrons and transparent to low energy neutrons.  One such device, called 
a Be filter, consists of a cryogenically cooled block of polycrystalline Be through which 
the neutron beam passes.  Since, the lowest order Bragg reflection of Be corresponds to a 
d-spacing of approximately 4 Å, the portion of the neutron beam with λ < 4 Å will be 
scattered by the Be block thereby reducing the high energy content of the transmitted 
neutron beam. The spectrum shown in Figure 19 was measured after the neutron beam 
passed through a Be filter (Figure 18).   

A second source of instrumental background arises from very slow (i.e., very long 
wavelength) neutrons that require more than one period of the neutron source to reach the 
detector.  As mentioned earlier, neutron wavelength is measured at pulsed neutron 
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sources by recording the time-of-flight of a neutron to travel a known distance.  The 
velocity of a neutron is the slope of its trajectory in Figure 20.  Ambiguity in the time-of-
flight exists, since the neutron detector can not distinguished between a neutron whose 
time-of-flight is t (e.g., t corresponding to a neutron with λ = 9 Å, Figure 20, solid line) 
compared to one with t + τ (e.g., t corresponding to a neutron with λ = 18 Å, Figure 20, 
dashed line). At first glance, the contamination of the neutron beam by very long 
wavelength neutrons might seem unimportant because there are so few of these neutrons. 
However, their probability of reflection from a sample is very great (because Q⊥ is so 
small when λ is so large).  In fact, it is a happy coincidence that the decay of the 
spectrum with wavelength is approximately counteracted by the approximate λ4 increase 
(Fresnel) of the reflectivity curve, so the measured intensity of the sample reflectivity is 
reasonably comparable (within an order of magnitude or so) for all wavelengths. 

 
Figure 20 Distance vs. time graph of trajectories corresponding to neutrons with different velocities 
(or wavelengths).  Since a detector can only distinguish times-of-flight within one source period, 
neutrons with λ = 9 Å and 18 Å are assigned the same times-of-flight; therefore, their wavelengths 
can not be distinguished.   Fortunately, mirrors, called frame overlap mirrors, can be placed in the 
neutron beam line to reflect the λ = 18 Å neutrons out of the beam while allowing the λ = 9 Å 
neutrons to pass through (to the detector). 

Fortunately, the possibility of an elevated instrumental background due to very 
long wavelength (i.e., the frame overlap) neutrons is easily addressed by placing a mirror 
in the neutron beam at a large angle such that neutrons with very long wavelengths (for 
example greater than 14 Å) are reflected out of the neutron beam, while the remaining 
neutrons are transmitted through the mirror.  In the case of the instrument discussed here, 
so-called 3θc (unpolarizing) supermirrors, consisting of a multilayer metallic coating 
whose critical edge is three times larger than that of Ni are deposited onto relatively 
transparent Si substrates. Extension of the critical edge is accomplished by arranging a 
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variation in the thickness of the layers in the mirror such that a series of Bragg reflections 
are produced starting at Qc (for a thick Fe film) out to large wavevector transfer [52, 53].  
After traveling through the neutron guide, Be filter and frame overlap mirrors, an intense 
beam of unpolarized neutrons with large cross-section (for the instrument whose 
schematic is shown in Figure 18, the cross-section is 6 cm by 6 cm) and having a large 
wavelength band from 4 to 13 Å, is ready for polarization. 

Polarization of cold neutron beams 
Production of cold neutron beams with polarization in excess of 90% is primarily 

accomplished using polarizing supermirrors.  Much like the supermirror discussed 
previously, a polarizing supermirror consists of hundreds of layers of alternating non-
magnetic and magnetic materials [52, 53].  The key to a good polarizing mirror is to 
maximize the magnitude of the spin-up potential, while matching the spin-down potential 
to that of the substrate, typically Si.  The spin-dependent reflectivity for such a polarizing 
supermirror is shown in Figure 21(a). Spin-up neutrons are reflected from the mirror, 
while spin-down neutrons are transmitted through it. In the case of the instrument 
illustrated in Figure 18, the transmitted spin-down neutron beam is used for experiments, 
and the spin-up beam is discarded (or absorbed).  The polarization of the transmitted 
neutron beam is shown in Figure 21(b) [54, 55].    An important reason for using the 
transmitted polarized neutron beam is that the same beam line can be used for 
experiments that require either polarized or unpolarized neutrons (e.g., an unpolarized 
neutron beam is obtained by simply translating the polarizer out of the beam line).  

The range in wavelength, ∆λ, and angular divergence, ∆θ, for which the neutron 
beam is well-polarized is determined by the locations of the critical edge of the spin-
down neutrons (below this edge the transmitted neutron beam has little intensity) and the 
critical edge for spin-up neutrons (above this edge both spin-down and spin-up neutrons 
are transmitted through the polarizer).  The range in ∆Q⊥ over which the neutron beam is 
well-polarized is 0.055 Å-1 (Figure 21)—a typical range for a supermirror. For an 
instrument using monochromatic radiation ∆λ/λ0 = δλ/λ0 ~ 2% (rms), so the contribution 
to ∆Q/Q from the range in neutron wavelength is correspondingly small.  Consequently, 
monochromatic neutron beams with relatively large divergence, ∆θ, can be easily 
polarized.  For example, if λ0 = 5 Å, a neutron beam with divergence of order ∆θ =1.25° 
can be polarized.  However, for instruments which use the time-of-flight technique and 
therefore use a large wavelength band, e.g., ∆λ ~10 Å, a challenging situation is 
encountered in that conventional techniques to polarize a monochromatic neutron beam 
can not efficiently polarize a neutron beam with a large wavelength band and achieve the 
large divergence of a monochromatic polarized neutron beam (within one period of the 
neutron source).  
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Figure 21 (a) Reflectivity from one of the polarizing supermirrors used in the Mezei polarization 
cavity.  The error bars represent the 1-σ standard deviations of reflectivities measured from 192 of 
the 196 mirrored-surfaces comprising the polarizing supermirror wedge in the polarization cavity 
(see text).   The calculated reflectivity curves from the Fe/Si example in Figure 11 are shown for 
comparison.  (b) The polarization obtained from the spin dependence of the neutron beam 
transmitted through the polarizing supermirror whose reflectivity is shown in (a). 

For example, say 3θc polarizing supermirrors are placed at an angle of θ = 0.9° 
relative to the neutron beam, so as to polarize λ = 5 Å neutrons (see Figure 22).  Provided 
the neutron beam is collimated so that neutrons strike the mirror with angles ranging from 
0.25° to 1.5° the neutron beam will be polarized (for λ = 5 Å).   Since collimation of the 
neutron beam is usually achieved with mechanical slits, neutrons with λ = 15 Å will also 
strike the mirror with angles ranging from 0.25° to 1.5°. For these longer wavelength 
neutrons, Q⊥ ranges from 0.004 to 0.022 Å –1; thus, when using the beam transmitted 
through a polarizer, the neutron beam will remain polarized (neutrons with Q⊥  < Qmin = 
0.01 Å –1, will be reflected out of the neutron beam regardless of their spin direction), but 
only a small fraction of the long wavelength neutrons (those satisfying 0.01 Å –1 <  Q⊥ < 
0.022 Å –1) will be transmitted through the polarizer (about 20% of long wavelength 
neutrons are transmitted in comparison to short wavelength neutrons).   In this 
configuration, neutrons with λ > λmin are inefficiently polarized since ∆θ and θ could 
have been larger.  What is needed is a method to achieve the optimum values of ∆θ and θ 
within one period of the neutron source for λ > λmin. 
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Figure 22 (a) A conventional arrangement for polarizing a neutron beam.  Mechanical slits limit the 
range of trajectories that impinge on a 3θc polarizing supermirror.  The transmitted neutron beam is 
polarized spin-down.  The minimum and maximum angles have been chosen to assure that the 
transmitted neutron beam with λ = 5 Å is polarized spin-down.  Some spin-down neutrons with λ =15 
Å (the blue colored trajectory) will nevertheless reflect from the supermirror and be lost from the 
transmitted polarized beam, thus, reducing the efficiency of this polarization device for multi-
wavelength applications.  The spatial and angular intensity distributions across the polarized neutron 
beam will also exhibit undesirable wavelength dependence.  (b) A polarization cavity consists of a 
wedge-shaped arrangement of polarizing supermirrors placed inside a Ni-coated neutron guide (at 
its end).  The divergence of the neutron beam impinging upon the supermirrors is limited by the 
neutron guide and has a favorable linear dependence upon λ.  The angle subtended by the 
supermirrors, ε, is chosen such that for λ > λmin only spin-down neutrons are transmitted through the 
cavity. 

One solution that achieves these requirements is the so-called polarization cavity 
[illustrated in Figure 22(b)] [56, 57, 58].  Transmission polarizing supermirrors are 
placed inside a neutron guide to form the shape of a wedge [Figure 22(b)].  The angle of 
the wedge, ε, is chosen such that ( )guide

c
mirror
c

θθε −= 2  where θc is the critical angle for 
the shortest wavelength, λmin, in the neutron beam whose polarization is desired.  In this 
scheme, the divergence of the neutron beam illuminating the polarization cavity is that of 
the neutron guide, and as noted earlier, the divergence increases linearly with 
wavelength. So, the polarization cavity has the property that any spin-up neutron with λ > 
λmin will be reflected out of the cavity by the supermirrors and escape the neutron guide 
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(to be absorbed by boron in the glass or in the borated-polyethylene surrounding the 
guide), because after reflection from the supermirrors, the angle of incidence between the 
neutron and the guide exceeds the critical angle of the guide.  On the other hand, spin-
down neutrons will travel straight through the wedge mirrors; thus, for λ > λmin, the 
neutron beam is polarized spin-down with divergence that increases linearly with λ.  
Pictures of the interior and exterior of a polarization cavity are shown in Figure 23.  The 
cross-section of the polarized neutron beam produced by the cavity is 130 mm tall by 25 
mm wide. The length of the cavity is about 1.2 m.  

The mirrors in the polarization cavity are magnetized in a 315 Oe field produced 
by a solenoid in which the cavity resides [Figure 23(b)].  The polarization axis of the 
neutron beam at the exit of the cavity is initially directed along the neutron beam line (the 
x-axis).  At the exit of the solenoid, the magnetic field is about 200 Oe (along the x-axis) 
and decays with distance (Figure 24).  Permanent magnets after the solenoid generate a 
magnetic field transverse to the neutron beam (Figure 24, inset). The variation of the 
angle, φ, of the magnetic field with respect to the neutron beam line with distance from 
the exit of the guide is shown in the inset of Figure 24.  The rate of change in φ with time, 
dφ/dt, is shown in Figure 25 (open symbols) for the case of a neutron with wavelength of 

λ = 4 Å. Provided Ldt
d ϖφ

4
1

<  where ωL = γ|B| (called the Larmor precession 

frequency) and γ = -1.833 x 104 rad/Gs, the neutron beam polarization will follow the 
change in the direction of the magnetic field with minimal (<3%) depolarization —the 
neutron spin changes direction approximately adiabatically [59, 60, 61].  Specifically, the 
neutron spin precesses on the surface of a cone with frequency equal to ωL.  The axis of 
the cone changes direction at the rate of dφ/dt.  Since the condition for adiabatic rotation 
of spin is fulfilled for neutrons with wavelength λmin (see Figure 25) (and therefore for λ 
> λmin), the polarization of the neutron beam rotates from the beam axis (i.e.,  the 
direction of neutron flight) to one perpendicular to the beam axis with negligible (<3%) 
loss in polarization [62].  
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Figure 23 (a) The polarization cavity consisting of a length of neutron guide containing a wedge-
shaped arrangement of polarizing transmission supermirrors.  (b) The polarization cavity is visible 
through the end of a solenoid used to magnetize the mirrors.  The polarization cavity assembly is 
supported on a translation stage so that it can be reproducibly slid into and out of the neutron beam 
as needed. 
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Figure 24  The variation of the x (along the beam axis) and z (in the vertical direction) –components 
of the magnetic guide field in the region (picture inset) between the exit of the cavity and the 
beginning of the guide plates is shown.  (Graph inset) The angle between the magnetic field and the 
beam axis is φ.  
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Figure 25 Rate of change in the angle between the magnetic field and the neutron beam line as a 
neutron with λ = 4 Å travels from the exit of the polarization cavity to the beginning of the magnetic 
guide.  Provided |dφ/dt| (open symbols) < |ωL|/4 (solid symbols), the neutron spin will follow the 
magnetic field. 

Spin-flippers 
In order to separate nuclear and magnetic scattering, at least two measurements 

are needed—one with spin-up neutrons and the other with spin-down neutrons.  Thus, a 
method of flipping the neutron beam polarization is required.  A device that flips the 
neutron spin is called a spin-flipper. An example of such a flipper—a radio-frequency 
gradient field spin-flipper [63, 64], is shown in Figure 26 and Figure 27. The flipper 
consists of a pair of permanent magnets that are tilted from front to back.  The tilt 
introduces a gradient in the strength of the vertical field (a field that is parallel to the 
laboratory reference field) along the neutron beam line (x-axis) with a value of about 95 
G (large in comparison to stray fields) in the center of the flipper.  A magnetic shield 
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consisting of µ-metal sandwiched between layers of steel surrounds the flipper [Figure 
27(b)].  The inner steel layer helps return the magnetic field lines created by the 
permanent magnets inside the flipper; thus, assuring the field, ( )zxB ˆ0 , changes linearly 
with position along the beam inside the flipper (Figure 28). The outer steel shield shunts 
some of the stray field that may be produced by high field magnets (e.g., superconducting 
magnets) used to magnetize samples.  The µ-metal decouples the fields inside the flipper 
from those outside it.  The Larmor precession frequency is shown in Figure 29 as a 
function of position and time-of-flight (for a neutron with λ = 4 Å). 

 
Figure 26 Schematic (a) mechanical and (b) electrical diagrams of the radio-frequency gradient field 
spin-flipper.  The neutron beam line is shown by the dashed line in (a). 
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Figure 27 Photograph of a radio-frequency gradient field spin-flipper (a) without and (b) with 
magnetic shields installed. 

By itself, a gradient in the magnitude of the field through the flipper will not 
change the polarization of the neutron beam; rather, a slow (adiabatic) change in direction 
is needed.  The second part of the flipper (the part responsible for the change in direction 
of the field) is the radio-frequency coil that consists of copper wire wrapped around a 
ceramic (Al2O3) tube.  Since the ceramic tube is an insulator, eddy currents (a source of 
loss) induced by the radio-frequency field are minimized.  Connected to the coil are high 
power capacitors that form a resonance circuit [see Figure 26(b)].  When radio-frequency 
power (~70 W) is applied to the flipper, the resultant magnetic induction inside the 
flipper consists of a component that rotates with frequency ω0 in the x-y plane time and a 
static component, , (from the permanent magnets) transverse to the beam line (i.e., 
parallel to the z-axis).  In the rotating frame of reference (one that rotates with the radio-
frequency field about the z-axis), the effective field is a combination of two fields whose 
orientations are fixed in the rotating frame: one is the peak amplitude of the radio-
frequency field (B

( )zxB ˆ0

1 ~ 13 G) (Figure 28), and the other is the spatially changing 
component in the vertical direction with a constant offset removed [60]. The effective 
induction, Beff, in the rotating frame of reference is: 

( ) ( ) xBzxBxeff ˆˆ 1
0

0 +









−=

γ
ϖB  

Equation 36 

In the rotating frame of reference, Beff changes direction smoothly with position (see 
Figure 28, inset)—first directed up, then down from the front to the back of the flipper.   
The rate of change in angle of Beff, dφ/dt, and 1/4ωL (for λ = 4 Å) with position along the 
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beam line is shown in Figure 29.  Since Ldt
d ϖφ

4
1

< , the polarization of the neutron 

beam rotates 180° adiabatically, provided the flipper is energized. By choosing 
( )000 == xBγϖ , which corresponds to about 2π*297 kHz, the midpoint in the 180° 

rotation of the polarization occurs in the center of the flipper.   
The measured flipping efficiency of the radio-frequency gradient field spin-

flipper is shown in Figure 30.  This flipper performs nearly ideally approaching flipping 
efficiencies of 100% over a broad range of wavelengths (λ > λmin).  Besides efficiently 
flipping neutron spin, the flipper also has two other attractive properties: first, tuning, 
e.g., optimization of currents etc., is never required even if the stray field environment 
changes, and secondly, no material is introduced into the beam line (i.e., the flipper is 
hollow) that might otherwise increase the background of the instrument or absorb 
neutrons.   
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Figure 28 Plot of the variation in the static field component, B0 (solid symbols), and the amplitude 
(when the flipper is “on”) of the radio-frequency field component, B1 (open symbols), with position 
along the centerline of the spin-flipper.  Inset: The angle, φ, between the effective field, Beff, and the z-
axis, corresponding to the direction of the magnetic field applied to the sample (and the laboratory 
frame of reference).  For the case when the spin-flipper is off, B1 = 0, so φ = 0 for all positions through 
the flipper. 
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Figure 29 Rate of change in the angle between the magnetic field and the z-axis as a neutron with λ = 
4 Å travels from the exit of the polarization cavity to the beginning of the magnetic guide.  Provided 
|dφ/dt| (open symbols) < |ωL|/4 (solid symbols), the neutron spin will follow the effective magnetic 
field with minimal depolarization. 

  During an experiment, the radio-frequency coil is energized (de-energized) to 
obtain spin-up (down) neutrons. For example, the coil might be cycled on and off every 
couple minutes.  For experiments requiring measurements of the four spin-dependent 
neutron cross-sections a second flipper (Figure 18) and another polarizing device (Figure 
18, usually this device is a polarizing supermirror or stack of polarizing supermirrors) are 
required.  For these experiments, the two flippers are cycled on and off in the four 
possible combinations.  Figure 31 shows the detector arm on which the second spin-
flipper, polarization analyzer and detector rests. 
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Figure 30 Variation of the efficiency of the flipper to flip a polarized neutron beam while maintaining 
good polarization is shown as a function of wavelength.  The average flipper efficiency is 99.8%.  
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Figure 31  (a) View from the detector-end of the reflectometer.  An 11-T superconducting magnet is 
visible in the background.  (b) View from the sample position towards the detector. 

 
 
 

Applications of polarized neutron reflectometry  
In this section we describe two applications of polarized neutron reflectometry to 

the study of a simple magnetic system.  In the first example, X-ray and polarized neutron 
reflectivity data are analyzed separately, and then jointly, to obtain the magnetic structure 
of a sample of FeCo on GaAs [65].  This example illustrates how the reflectivity obtained 
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from a model of the chemical composition of a sample is fitted to X-ray data using the 
computer routine CO_REFINE.  From this analysis, parameters for surface and interface 
roughness and film thickness are obtained.  These parameters serve as initial guesses in 
the refinement of a second model to the neutron data that also uses CO_REFINE.  
Finally, the X-ray and neutron models are compared, and a new model—one that 
includes a reacted layer between the magnetic film and substrate, is fitted to the X-ray 
and neutron data at the same time using CO_REFINE to achieve a consistent explanation 
for all the data. 

In the second example, we illustrate application of vector magnetometry using 
neutron scattering to isolate the magnetic scattering from the nuclear scattering of the 
same sample.  In this example, a nuclear model is fitted to the non-spin-flip scattering 
and a magnetic model to the spin-flip scattering.  Again, the magnetic and nuclear layer 
thicknesses of the film differ and are reconciled by the addition of a non-magnetic reacted 
layer between the magnetic layer and substrate. 

Magnetic vs. chemical structures identified through X-ray and 
polarized neutron reflectometry 

In this example, a detailed understanding of the magnetic structure of the interface 
in one prototypical spin injection heterostructure comprised of an alloy of FeCo on one 
side (the spin source) and GaAs(100) on the other side (the spin sink) is obtained using a 
combination of X-ray and polarized neutron reflectometry [65].  The example 
demonstrates use of the computer routine CO_REFINE to obtain a magnetic and nuclear 
model whose X-ray and polarized neutron (non-spin-flip) reflectivities fit the data.   In 
fitting the model to the data, we find the magnetic thickness of the FeCo layer to be 6 Å 
less than its chemical thickness. 

The sample consists of an Fe48Co52 film epitaxially grown onto semi-insulating 
GaAs(100) (2x4)/c(2x8)β2 –As rich surface [66] by molecular beam epitaxy under ultra 
high vacuum and characterized by in situ electron diffraction and ex situ X-ray 
diffraction, Rutherford backscattering spectrometry, transmission electron microscopy 
and magnetometry. The 20-nm thick FeCo layer was grown at 95°C, and a 3 nm thick Al 
capping layer was subsequently deposited to prevent oxidation during ex situ 
characterization. The detailed sample preparation and structural characterization results 
are described elsewhere [67].  The magnetization hysteresis loops of FeCo alloy grown 
on GaAs(100) (2x4)/c(2x8)β2 with magnetic fields applied along two perpendicular 
directions in the sample plane are shown in Figure 32. The magnetization measured along 
the [011] direction (solid curve) indicates this axis is an easy axis, while the sheared 
hysteresis loop measured along the [ direction (dashed curve) suggests this direction 
is considerably harder.  

01 1]
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Figure 32 Magnetization of the FeCo/GaAs sample along the easy, [ ]011 , and hard, [ ]101 , axes.  
The sample magnetization has a large uniaxial anisotropy.  Figure adapted from Ref. [65]. 

The specular X-ray reflectivity of the sample after removal of diffuse scattering 
(Figure 33) was measured at room temperature with a conventional rotating anode X-ray 
generator, producing CuKα radiation, and a position sensitive detector as described 
elsewhere [68].  One important distinction between how X-ray and neutron reflectivity 
data are collected involves the portion of the sample illuminated by the respective beam.  
Generally (with the exception of the very small Q⊥ region), the X-ray beam illuminates 
only a portion of the sample, whereas, in the case of neutron reflectometry, the sample is 
most often completely bathed in the neutron beam.  When comparing the X-ray and 
neutron reflectivity data from the same sample it is important to be cognizant of the 
possibility that the two techniques are perhaps measuring different quantities, since the 
sample may not be uniform over its entire surface. In order to minimize the influence of 
non-uniformity (if any) of the sample on the reflectivity data, the X-ray reflectivity of the 
sample was measured over several parts of the sample in order to make a more accurate 
comparison (by addition of the curves) with the neutron measurements.  
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Figure 33 X-ray reflectivity (open symbols) of the FeCo/GaAs sample.  The calculated reflectivity 
(solid curve) is from the model shown in the inset. 

The X-ray reflectivity (solid curve, Figure 33) of a model structure [Figure 33, 
inset] was calculated using the optical formalism of Parratt [4].  The initial guesses for 
the parameters of the model from which the X-ray scattering length density profile was 
calculated, are given in Table 3.  These values were chosen based on knowledge of the 
deposition process, and using literature values for the X-ray scattering length density, 

ex NZr=ρ , where Z is the atomic number (per formula unit) and re is the Bohr radius of 
2.82x10-5 Å.  In principle, ρx is a complex number with the imaginary component related 
to the mass absorption length of the X-ray beam in the material.  The imaginary 
component of ρx was initially assigned a value of zero; however, its value will be 
optimized (the imaginary component of ρx for FeCo will be significant for CuKα 
radiation).   

The CO_REFINE routine optimized the parameters within the constraints of the 
lower and upper bounds listed in the Table 3 subject to the condition that χ2—a measure 
of error between the fitted and observed curves was minimized [69]. The optimized 
parameters of the model are shown in the second to last column of Table 3.  The last 
column of Table 3 lists the perturbations to the optimized parameters such that the 
reduced χ2,  = χ2

νχ 2/ν (where ν is the number of data points minus adjustable 
parameters), is changed by one, i.e., the last column represents the perturbation to the 
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optimized parameter that significantly worsens the fit by 1-σ [70].  The error bar is a 
measure of the sensitivity of the model function to yield a curve that represents the data.  
The error bar is not necessarily a representation of the uncertainty of the fitted parameter.  

As a mechanism to understand the accuracy and precision of the optimized 
parameters, it is instructive to compare them with the initial guesses.  In the case of the 
Al-oxide layer thickness, the initial guess of 30 Å was chosen based on the quantity of Al 
deposited in the growth chamber.  Naturally, upon exposure to air, the Al will oxidize and 
thus its layer thickness can be expected to swell.  In this case the swelling of a 30 Å thick 
film is roughly a factor of two.  The X-ray scattering length density attributed to the Al-
oxide layer is greater than that for Al [ρx(Al) = 2.2x10-5 Å-2], but less than that for Al2O3 

[ρx(Al2O3) = 3 x10-5 Å-2].  The intermediate value of 2.39x10-5 Å-2 might indicate the 
oxide layer is composed of elemental Al and Al2O3.  Further support for this conclusion 
is found in the large value of surface roughness/diffusion (in comparison to the buried 
interfaces).  

The FeCo layer thickness is certainly in good agreement with the thickness sought 
by the sample growers.  The magnitude of |ρx | is 90% of the initial guess for FeCo 
obtained from the lever-rule addition of ρx for bulk Fe and Co.  The value of ρx obtained 
for GaAs, which has a small imaginary component, is very close to that obtained from the 
literature.  The difference, ∆ρx = 0.25x10-5[Å-2], can be related to misalignment of the 
sample (or measurement of αi), by differentiating the relation 

λ
απ

πρ i
cQ

sin4
4 == with respect to αi.  A misalignment of the sample by ∆αi  = 0.03° 

could account for the difference between the measured and literature values of ρx 
Next, we wish to combine the X-ray reflectivity study, from which information 

about the chemical or nuclear structure of the sample is learned, with polarized neutron 
reflectivity data taken from the sample in a large, 1 kOe, (saturating) magnetic field.  The 
intent of the neutron study is to identify the Fourier components of the sample 
magnetization, in order to distinguish the magnetization of the FeCo/GaAs interface from 
the FeCo bulk.  

The specular reflectivity (after removal of diffuse scattering) is shown in Figure 
34. The SF reflectivity was also measured, but no SF reflectivity was observed.  The lack 
of SF (specular) reflectivity is consistent with the sample being saturated, i.e., the entire 
sample magnetization was parallel to the 1-kOe field.   
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Table 3 Listing of initial guess values for the model, v0, lower, v-, and upper, v+, bounds with which to 
limit the optimization, the optimal values that yield a minimum in χ2, and the perturbation, δv, of the 
value that produces an increase in χ2 corresponding to a 1-σ error bar. The number of data points is 
134. 

Medium Parameter v0 v- v+ vopt δv 
Vacuum Re(ρX)x10-5[Å-2] 0   0  

 Im(ρX)x10-5[Å-2] 0   0  
 σ01 [Å2] 10 5 20 16.4 0.8 
 ∆ [Å] 0   0  

Al-oxide Re(ρX)x10-5[Å-2] 3 1 4 2.39 0.01 
 Im(ρX)x10-5[Å-2] 0 0 1 0.059 0.004 
 σ12 [Å2] 10 5 20 11.75 0.03 
 ∆ [Å] 30 20 80 67.77 0.08 

FeCo Re(ρX)x10-5[Å-2] 6.6 4 7 5.835 0.005 
 Im(ρX)x10-5[Å-2] 0 0 2 0.83 0.01 
 σ23 [Å2] 10 5 20 9.21 0.05 
 ∆ [Å] 200 190 210 200.41 0.08 

GaAs Re(ρX)x10-5[Å-2] 3.99 2 5 3.74 0.01 
 Im(ρX)x10-5[Å-2] 0 0 1 0.23 0.04 
 χ2 (ν = 121) 704614   382  

 
 
 
The model shown in the inset of Figure 34 was fitted to the neutron data. The 

initial guesses for this model were obtained from the X-ray analysis with the exception 
that values of ρn and ρm were calculated based on literature values of the neutron 
scattering lengths and magnetization of FeCo (see Table 4).  The routine CO_REFINE 
was once again used to obtain the parameters of the model (listed in Table 4) such that 
the calculated reflectivities fitted the neutron data.  The reflectivity curves obtained from 
the model are shown as the solid curves in Figure 34. Interestingly, the fitted chemical 
layer thickness of FeCo obtained from the analysis of the X-ray data is larger than that 
obtained from the analysis of the (neutron) NSF reflectivities. One explanation for the 
difference is that the X-ray fitting is one involving only the chemical structure of the 
sample, while the neutron fitting weights the magnetic and nuclear contributions roughly 
equally. The implication is the magnetic thickness of the FeCo layer is less than its 
chemical thickness.  

In order to test this implication, a new model was developed—one that included 
an extra interface layer between the FeCo film and the GaAs substrate.  The FeCo layer 
thickness was constrained to be the value obtained from neutron scattering, i.e., ∆FeCo = 
197 Å, and the thickness of the “reacted” layer was constrained to be the difference 
between the values of ∆FeCo determined separately by X-ray and neutron fitting, or 3 Å.  
The new model was then fitted or co-refined to the X-ray and polarized neutron 
reflectivity data at the same time.  Values intermediate between the optimized values in 
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Table 3 and Table 4 were chosen as initial guesses for the new model.  The initial guesses 
of ρx, ρn and ρm for the reacted layer were chosen to be ρx for the FeCo layer, and ρn and 
ρm (= 0) for GaAs, respectively (see Table 5).   The X-ray and neutron reflectivities 
obtained from the model are shown in Figure 35.  The magnetization refined for the 
reacted layer is not significantly different than zero; therefore, we conclude that the 
additional level of complexity achieved by adding a thin non-magnetic layer between the 
FeCo and GaAs, yields one model that explains the X-ray and neutron data in a self-
consistent fashion.  
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Figure 34  Polarized neutron reflectivity data (open symbols) for the FeCo/GaAs sample are shown 
along with reflectivity curves (solid curves) that best fit the data obtained from a model structure 
(inset).  The initial guesses for the fitting procedure were those obtained from the fit to the X-ray 
data.  This fit is to the neutron data only. 
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Table 4 Listing of guess and optimized parameters for a fit of the FeCo/GaAs model structure to the 
polarized neutron reflectivity data consisting of 348 measurements. 

Medium Parameter v0 v- v+ vopt δv 
Vacuum ρn x10-6[Å-2] 0   0  

 ρm x10-6[Å-2] 0   0  
 σ01 [Å2] 16.4 5 20 10.6 0.3 
 ∆ [Å] 0   0  

Al-oxide ρn x10-6[Å-2] 5.21 2 6 2.36 0.02 
 ρm x10-6[Å-2] 0   0  
 σ12 [Å2] 11.75 5 20 10.8 0.1 
 ∆ [Å] 67.77 20 80 62.7 0.3 

FeCo ρn x10-6[Å-2] 5.13 4 6 4.94 0.01 
 ρm x10-6[Å-2] 4.97 4 6 5.04 0.01 
 σ23 [Å2] 9.21 5 20 12.0 0.1 
 ∆ [Å] 200.41 190 210 197.5 0.1 

GaAs ρn x10-6[Å-2] 3.07 2 4 3.07 0.02 
 ρm x10-6[Å-2] 0   0  
 χ2 (ν = 337) 26868   1102  

 

 60



Table 5 Refinement of one model to X-ray and polarized neutron reflectivity data (consisting of 482 
measurements) at the same time. 

Medium Parameter v0 v- v+ vopt δv 
Vacuum Re(ρX)x10-5[Å-2] 0   0  

 Im(ρX)x10-5[Å-2] 0   0  
 ρn x10-6[Å-2] 0   0  
 ρm x10-6[Å-2] 0   0  
 σ01 [Å2] 13.6 5 20 15.6 0.08 
 ∆ [Å] 0   0  

Al-oxide Re(ρX)x10-5[Å-2] 2.39 2 3 2.17 0.01 
 Im(ρX)x10-5[Å-2] 0.06 0 1 0.08 0.01 
 ρn x10-6[Å-2] 2.36 2 6 2.68 0.02 
 ρm x10-6[Å-2] 0   0  
 σ12 [Å2] 11.2 5 20 11.82 0.02 
 ∆ [Å] 65.2 60 70 65.46 0.02 

FeCo Re(ρX)x10-5[Å-2] 5.83 5 6 5.75 0.03 
 Im(ρX)x10-5[Å-2] 0.83 0 1 0.72 0.08 
 ρn x10-6[Å-2] 4.94 4 6 5.01 0.01 
 ρm x10-6[Å-2] 5.03 4 6 5.00 0.01 
 σ23 [Å2] 10.5 5 20 10.8 0.1 
 ∆ [Å] 197.5   197.5  

Reacted Re(ρX)x10-5[Å-2] 5.83 3 6 5.13 0.02 
 Im(ρX)x10-5[Å-2] 0.83 0 1 0.31 0.02 
 ρn x10-6[Å-2] 3.08 3 7 6.1 0.3 
 ρm x10-6[Å-2] 0 0 6 0.00 0.02 
 σ23 [Å2] 10.5 5 20 7.63 0.04 
 ∆ [Å] 2.9   2.9  

GaAs Re(ρX)x10-5[Å-2] 3.74 3 4 3.84 0.01 
 Im(ρX)x10-5[Å-2] 0.23 0.2 0.3 0.23 0.02 
 ρn x10-6[Å-2] 3.08 2 4 3.10 0.02 
 ρm x10-6[Å-2] 0   0  
 χ2 (ν = 459) 4182   1617  
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Figure 35 X-ray and neutron reflectivity curves of one model (inset) fitted to the X-ray and neutron 
data at the same time. 

Magnetic and chemical structures obtained from vector 
magnetometry using neutron scattering 

For magnetic systems with large remanent magnetization (or strong anisotropy), 
polarized neutron reflectometry with polarization analysis is a powerful tool for isolating 
the nuclear or chemical structure of a material from its magnetic structure.  Indeed, 
artificially structured materials are examples of systems that often exhibit unusual 
magnetic anisotropies.  Here, we show how the uniaxial anisotropy of a material and 
neutron scattering can be applied to rigorously separate the nuclear and magnetic 
structures of the sample discussed in the previous example. 

First the magnetic history of the sample was prepared by applying a field along 
the [011] (easy) axis of the GaAs substrate (Step 1, Figure 36).  The field was chosen to 
be large enough (1 kOe) in order to saturate the sample magnetization (Figure 32).  Next, 
the field is reduced monotonically to a small value on the order of a few Oe (Step 2, 
Figure 36). The magnetization of the sample in this field remained nearly the same as its 
saturated value (see Figure 32).  The sample was then rotated about its surface normal by 
90° (Step 3, Figure 36), and the non-spin-flip and spin-flip reflectivities for the sample in 
a field of 9 Oe pointed along the [ ]101  axis were measured (Figure 37). 

In order to investigate whether the nuclear and magnetic layer thicknesses of the 
FeCo layer were different, a second model was fitted to the data (symbols) shown in 
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Figure 37. This model represents the nuclear and magnetic structures of the sample (inset, 
Figure 37) separately—the magnetic and nuclear layer thicknesses and interface 
roughnesses were optimized independently.  Finally, to account for the vector property of 
the sample magnetization, an angle, φ, between the sample magnetization and the applied 
field (Figure 36) was also refined.  The best fitting reflectivities are shown as the solid 
curves in Figure 37.  The input guesses and the optimized parameters for the nuclear and 
magnetic models are listed in Table 6.  

An important result of the data analysis is that the portion of the sample 
magnetization that rotated with the sample is about 6 Å thinner than the thickness 
attributed to the nuclear scattering from FeCo.  In other words the magnetic thickness of 
FeCo is 197 Å thick, while the chemical thickness is 203 Å.  This result is consistent with 
the conclusion of the previous analysis of the X-ray and polarized neutron data which in 
order to account for a discrepancy between chemical thickness as determined by X-ray 
reflectometry and magnetic thickness as determined by polarized neutron reflectometry 
(of the sample taken in saturation), a thin non-magnetic reacted layer was needed 
between FeCo and GaAs. 

 

 
Figure 36 Procedure for preparing the magnetic history of the FeCo/GaAs sample prior to 
measurement with polarized neutrons.  The magnetization of the sample is shown by the red arrow.  
The polarization of the neutron beam is parallel (or anti-parallel) to the applied field.  The sample 

 63



magnetization is first saturated, then the magnetic field is reduced to a small value—just large 
enough to maintain the polarization of the neutron beam, and finally the sample is rotated 90° about 
its surface normal, placing its magnetization perpendicular to the polarization axis of the neutron 
beam. 
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Figure 37 The polarized neutron reflectivities (symbols) of the FeCo/GaAs sample with its 
magnetization pointed along the neutron beam line (i.e., perpendicular to the applied field and in the 
plane of the sample) are shown.  Note the R++ and R-- reflectivities are nearly superimposed.  The 
fitted reflectivities (solid curves) were obtained from the nuclear and magnetic scattering length 
density profiles (inset).  The magnetization vector has a magnitude given by the magnetic component 
in the figure inset and a direction rotated about the surface normal from the applied field by an angle 
of 89.7°. 

 
Table 6  Listing of guesses (v0) and optimized parameters (vopt) for nuclear magnetic models for the 
scattering length density profiles.  Unless otherwise noted, values in the magnetic model were 
constrained to be the same as those in the nuclear model.  The parameters were optimized between 
lower and upper limits, v- and v+, respectively.  If no limits are given the parameter was not 
optimized.  The reflectivities contained 405 measurements. 

Medium Parameter v0 v- v+ vopt 
Vacuum 
(nuclear) 

ρn x10-6[Å-2] 0   0 

 σ01 [Å2] 15.6 5 20 5.06 
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 ∆ [Å] 0   0 
Al-oxide 
(nuclear) 

ρn x10-6[Å-2] 2.36 2 4 2.37 

 σ01 [Å2] 11.82 4 20 19.9 
 ∆ [Å] 65.46 60 70 64.6 

FeCo 
(nuclear) 

ρn x10-6[Å-2] 5.01 4 6 5.32 

 σ01 [Å2] 10.8 4 20 9.1 
 ∆ [Å] 200.9 190 210 202.9 

GaAs 
(nuclear) 

ρn x10-6[Å-2] 3.10 2 4 3.26 

Al-oxide 
(magnetic) 

ρm x10-6[Å-2]     

 σ01 [Å2] 11.82 5 20 12.65 
 ∆ [Å]     

FeCo 
(magnetic) 

ρm x10-6[Å-2] 5.0 4 6 5.36 

 φ −π/2 -1.6 -1.53 -1.565 
 σ01 [Å2] 10.8 5 20 11.2 
 ∆ [Å] 197 190 210 197.4 

GaAs 
(magnetic) 

ρm x10-6[Å-2]     

 χ2 (ν = 391) 3428   1511 

 

Summary and conclusions 
The intent of this chapter is to provide a practical tutorial on polarized neutron 

reflectometry—one that provides reasonable limits to what can be learned from neutron 
reflectometry, a working knowledge of a polarized neutron reflectometer, a detailed 
understanding of how neutron scattering data are acquired and information obtained from 
the data, and an example problem solved in detail. Many other examples of solved 
problems exist in the literature, see for example Ref. [23] and references therein.   

It is worth stressing the role polarized neutron reflectometry can play in solving 
problems involving artificially structured materials and nanomagnetism.  Many sample 
fabrication techniques exist, e.g., thin film growth, lithography, templating and self-
assembly, to modulate the atomic, electronic and chemical structures of materials. 
Physical properties can be modulated via confinement in one, two or all dimensions to 
create multilayers, wires or dots that exhibit novel magnetic behavior. Confinement of 
physical structures can influence the magnetic properties of materials in ways that cannot 
be predicted from the averaging of constituent component properties, e.g., giant 
magnetoresistance in Fe/Cr superlattices.  These new nanocomposites are inhomogeneous 
materials with unique magnetic properties.  To understand the magnetism of such 
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artificially structured materials requires an understanding of the interplay between 
structure and magnetism at the nanometer length scale.   

Because magnetism is inherently inhomogeneous in artificially structured 
materials, bulk probes, such as magnetometry, are ill-suited to provide information about 
the spatial variation of magnetization in non-homogeneous materials.  Fortunately, the 
spatial length-scales of magnetism are precisely those that can be probed with neutron 
scattering. Particular strengths of polarized neutron reflectometry include its ability to 
measure the magnetic vector response of buried materials to extremes of magnetic and 
electric fields, temperature and (photon) irradiation. For example, polarized neutron 
reflectometry is a technique that can measure the depth dependent magnetization in thin 
films.  Since polarized neutron reflectometry is inherently interface specific, the 
magnetization of the interfacial region (even ones that are deeply buried) can be 
measured with a great degree of accuracy in the presence of a strongly magnetic 
substrate.   While not discussed in depth here, measurements of off-specular diffuse 
scattering in reflection geometry provide information about the lateral distribution of 
(inhomogeneous) magnetism across a sample surface or interface.  For example, the 
lateral dimensions of magnetic domains can be determined from off-specular diffuse 
scattering and when these measurements are made as a function of Q⊥, correlation lengths 
of lateral magnetic domains at one depth into the sample with those at another depth can 
be obtained [71].  Other examples include characterizing the flow of magnetic induction 
around patterned holes (antidots) or correlation of magnetism between discrete but close 
by neighbors [72]. 

While many truly nanopatterned systems cannot be conveniently made in cm2 size 
areas (necessary for study with neutron scattering), polarized neutron reflectometry may 
still provide important information to understand magnetism in model systems that 
replicate certain structural features, e.g., interfaces, in these systems.  For example, 
interest in ferromagnetic semiconductors is motivated by the prospect of spin-injection 
devices that automatically imply the existence of buried interfaces in the structures of 
interest.  Characterization and understanding of interface quality is therefore a key issue 
for such devices to succeed.  Here, polarized neutron reflectometry is expected to play an 
important role.  For example, the flow of spin current, while most probably too small to 
be directly measured with neutron scattering, is profoundly affected by the magnetic 
properties of interfaces, which can be examined quite naturally with polarized neutron 
reflectometry. 
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Appendix 1: Instructions for using CO_REFINE 
The computer program executable “co_refine.exe” optimizes parameters of a 

model subject to user-selectable bounds and constraints in order to minimize χ2 [32, 70], 
a measure of error between measured and calculated reflectivities.  The program requires 
one or more data files (in the absence of a data file, the program will produce only the X-
ray and neutron reflectivities for the model structure), a file of model parameters and 
some user input.  The program operates in a Windows environment. 

Data file format 

Data files consist of four columns of data separated by one or more spaces.  The 
four columns are Q⊥ (in Å-1), R, , and  (in Å2 2 2

2σ
2σ

Rσ Qσ -2), respectively, where  is the 

variance on R and  is the variance on Q
Rσ

Q ⊥ (i.e., value of ∆Q2, see Equation 15).  Q⊥ and 

 should increase monotonically with row position.  A portion of a data file is shown in 
Figure 38.  CO_REFINE fits a model structure to X-ray, unpolarized neutron or polarized 
(NSF) neutron reflectivity data either separately, or X-ray data and one of either 
unpolarized or both polarized neutron (non-spin flip) reflectivities.  The X-ray reflectivity 
curve must be named “pfn_xx.out”, where the choice of “pfn” is up to the user.  Likewise 
the unpolarized neutron reflectivities or the spin-up and spin-down polarized neutron 
reflectivities are “pfn_uu.out”, or “pfn_pp.out” and “pfn_mm.out”, respectively.  The 
maximum number of rows or values of Q

Q

⊥ is 3000. 
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Figure 38 The first few entries of the polarized neutron data file “feco_pp.out” containing the spin-
up neutron reflectivity.  The columns are Q⊥ (in Å-1), R, , and  (in Å2

Rσ 2
Qσ -2), respectively. 

Model (or guess) file format 

The model whose calculated reflectivity curves are fitted to the data consists of a 
sequence of layers (or films) on a substrate.  Each layer is characterized by six 
parameters.  For the j-th layer, the parameters are Real(ρxj), Imag(ρxj), ρnj, ρmj (all ρ’s are 
in units of Å-2), interface roughness between the j-th and j+1-th layer [in Å (rms)], and the 
thickness of the j-th layer (in Å). The first layer is considered to be the surrounding 
medium, which is typically vacuum or air.  The roughness parameter for this layer is the 
surface roughness of the sample.  The thickness of the first layer is irrelevant (because it 
introduces only a phase factor); its thickness is zero. 

The parameters of the model are tabulated in a three-column (separated by a space 
or spaces) format.  The first column contains the value for the particular parameter, and 
the next two columns are the lower and upper bounds, respectively, within which 
CO_REFINE will determine the value that yields a local (and hopefully a global) 
minimum of χ2.  If no optimization of the parameter is desired, then the lower and upper 
limits should be equal.  For example, if optimization of a model to only unpolarized 
neutron data is desired, then the lower and upper limits should be equal for all parameters 
involving Real(ρxj), Imag(ρxj), and ρmj.  The maximum number of layers is 83 (excluding 
the substrate).  A simple example of a model file describing a two-layer structure of Al 
on FeCo is shown in Figure 39. 
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Figure 39 A model or guess file containing initial values for the different model parameters (first 
column) and the lower and upper bounds limiting optimization of the parameters.  X-ray parameters 
are not optimized in this example, since this particular guess file is intended for fitting to only 
neutron data.  Only the first three columns are required by CO_REFINE. 

After the parameters for the layers, the next four parameters in the model file 
consist of values of Real(ρx), Imag(ρx), ρj, ρm for the substrate.  The layer and substrate 
parameters are needed to calculate the depth dependence of the X-ray and/or neutron 
scattering length densities.  At the conclusion of the program, the scattering length 
density profiles are written to a file called “beta.out”.  This file contains seven columns 
consisting of y-depth (in Å), Real(ρx), Imag(ρx), ρ--, a “0”, ρ++, and a “0” (again all ρ’s 
are in units of Å-2).   

Once the reflectivity curves are calculated, they are normalized to scale factors 
and a factor to account for Q⊥-independent background (discussed later).  These 
parameters are found in the last seven entries of Figure 39.  The first three of the last 
seven parameters are applied to the calculated neutron reflectivities.  They consist of a 
neutron scale factor, , (typically a value close to one, since conventionally the 
measured reflectivity curve is normalized to unity below the critical edge), a scale factor 
to account for a difference between the scale factors for spin-up and spin-down 
reflectivity curves, , (this difference should be zero), and instrumental neutron 
background, , (typically on order of 10

0

B

nI

∆
nI

nI -7 or 10-6) that is treated as if it were 
independent of Q⊥.  The last four parameters are applied to the calculated X-ray 
reflectivity.  The first is the length of the sample (in mm) (This parameter is used to 
calculate the variation of the reflectivity arising from the fraction of the X-ray beam 
subtended by the sample footprint as the sample angle is changed.  To turn off the 
footprint correction, use a large value for the parameter, e.g., 1000.  A footprint 
correction is not applied to neutron reflectivities because samples are typically always 
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bathed in the neutron beam, and consequently the 1/αi-dependence is usually removed 
from the data before fitting.)  The second parameter is reserved for future use.  Set this 
parameter to 1 and do not optimize it.  The last two parameters are the normalization, , 
and background, , factors for the X-ray reflectivity. 

0

B
xI

xI

CO_REFINE 

The program CO_REFINE uses the parameters in the model (or guess) file to 
calculate X-ray and neutron scattering length density profiles as described in the text.  
The program then uses the dynamical recursive algorithm (the Parratt formalism 
described in the text) to calculate the reflectivity curve.  The curve is calculated between 
Qmin and Qmax that extend beyond the measured range of Q⊥ in steps, Qstep, determined by 
the distance between the first two measurements of Q⊥ in the data file (thus the user has 
control over the step size by choosing the first two steps in Q⊥).  Not only must the 
number of measurements be less than 3000, but the number of points equal to (Qmax-
Qmin)/Qstep must also be less than 3000 (effectively reducing the number of measurements 
to a value less than 3000). 

Next, the convolution of the reflectivity and a Gaussian function with width given 
by  is computed in order to account for the resolution of the reflectometer.  The result 
is a reflectivity curve that is compared to the experimental data by calculating χ

Qσ
2.  The 

curve yielding a minimum of χ2 is sought by the optimization routine in CO_REFINE.  
After minimizing χ2, the program writes the scattering length density profile to a file 
called “beta.out”, and the best fitting reflectivity curves to “pfn_xx.fit”, “pfn_uu.fit” or 
“pfn_pp.fit” and “pfn_mm.fit”.  The files containing the fitted curves consist of four 
columns, Q⊥, R(fitted), R(observed), and σR(observed). Finally, a third file listing the 
values of the optimized model are written to a file of the user’s choice.  This parameter-
listing file is written with the same format as the guess file with additional data 
describing the quality of the fit, the number of data points, etc., appended to the file.  The 
parameter file can be used as a model or guess file after removal of the additional data 
(i.e., the last 11 lines).  An example of a parameter file is shown in Figure 40. 
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Figure 40  A listing of the optimized parameters of a model.  The optimized parameters are in the 
first column.  The second and third columns show the lower and upper bounds limiting the 
optimization.  The fourth column indicates whether a parameter was optimized (= 0), held fixed (= 1) 
or in the case of a negative number, constrained to equal the value of another parameter (see text).  
The final two columns show perturbations to the optimized value in the first column that increase χ2 
by 1, corresponding to a 1-σ error.  The information below the columns must be deleted before the 
parameter listing can be used as a model file for a new optimization.  The values of χ2 and χ2  
reduced by the number of data points minus the number of fitted parameters are indicated in the 
information block.  The contributions to χ2 from the X-ray, spin-down and spin-up neutron data are 
shown in the part of the information block labeled “chi_spin”, respectively. 

Tips for successful fitting 

(1) Be certain the data are worthy of analysis.  Model fitting is often time consuming 
and tedious.  Data that are free of systematic errors are usually easier to fit than 
data that are fundamentally compromised. 

(2) If possible obtain information about the sample from other sources, either from 
other measurements or the literature.  Use this information in formulating sound 
initial guesses. 
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(3) Try fitting just a few parameters at first, and as these parameters become 
optimized add new parameters to the fitting process.  Fitting is often an iterative 
procedure. 

(4) Consider fitting only a portion of the data, e.g., data for small Q⊥, to obtain better 
guesses, before fitting all the data.  Or, consider fitting X-ray data before fitting 
X-ray and neutron data together.  Or, consider fitting data from two spin states 
separately (e.g., by renaming the files as unpolarized data files “_uu”).  By 
comparing the scattering length density profiles from separately fitted data files, 
sometimes a “universal” model can be developed. 

(5) At the conclusion of a successful fitting exercise, the sensitivity of model 
parameters to fitted reflectivity curve should be tested by making perturbations to 
the parameters.  In this way one can determine the relative importance of the 
different parameters. 

(6) Use a fast computer and be patient! 

A worked example using CO_REFINE 

The CO_REFINE executable, an example of a guess file (guess.in) and the X-ray 
and neutron data appearing in Figure 35 are located in the co_refine directory of the 
attached compact disk.  Output displayed during execution of the program is shown in 
Figure 41, Figure 42, and Figure 43.   

One feature of the program that is not shown in the figures is the use of 
constraints.  Parameters can be constrained to have the same values and then to be 
collectively optimized.  This feature is useful optimizing a model with many parameters, 
e.g., as needed to describe a superlattice.  For example, one might wish to constrain the 
roughness of every interface (or layer thickness, etc.) to be the same value, but this value 
would be subject to optimization.  In this example, every fifth parameter in the guess file 
is a roughness parameter, so to optimize the roughness of all interfaces collectively, the 
usual lower and upper bounds are assigned to one of the roughness parameters, e.g., the 
10th parameter, and the rest are constrained to it. Constraints are imposed by answering 
“Y” when prompted by the program: “Are there any constraints [N]?”.  Next, pairs of 
parameters that are to be constrained are specified, such as “5, 10” which constrains the 
5th parameter to have the value of the 10th, then “15, 10”, etc., until no more pairs are to 
be constrained (at which point a blank line is entered).  In this example lower and upper 
bounds would be specified in the guess input file for the 10th parameter. 
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Figure 41 Invocation of CO_REFINE and examples of user input to run the program are shown.  
The weighting choice of “1” is used to achieve a local minimum in χ2.  The choice of “-1” imposes a 
logarithmic weighting scheme on the errors that more heavily weights measurements at large Q⊥ 
than at small Q⊥.  After selection of the weighting scheme, the range in Q⊥ over which the reflectivity 
is calculated is given (in comparing to the data, interpolations of the calculated curve to the measured 
values of Q⊥ are made) and the number of calculated points is reported.  The number of calculated 
points must be less than 3000. 
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Figure 42  The values of χ2 before and after optimization are shown. 

 74



 
Figure 43  The reduced value of χ2 and the contributions to χ2  from the fit to the X-ray and 
polarized neutron data are reported at the conclusion  of the program. 

 

Appendix 2: Instructions for using SPIN_FLIP 
In contrast to the computer program CO_REFINE, which calculates the two non-

spin-flip reflectivities R++ and R-- using a scalar scattering potential, the computer 
program SPIN_FLIP generates the vector scattering potential from which the non-spin-
flip and spin-flip, RSF, reflectivities are calculated with the aid of the subroutine, 
GEPORE [28]. 

Besides the capability to treat the net magnetization vector depth dependence of a 
sample (the sample magnetization is treated as if it were a single domain laterally), 
SPIN_FLIP can generate the nuclear and magnetic scattering length density profiles from 
a single model (like CO_REFINE), or use two models to generate the nuclear and 
magnetic potentials separately.  Even for instances in which SF scattering is not observed 
(and a scalar potential would suffice), the SPIN_FLIP program offers the opportunity to 
characterize the magnetic structure of an interface differently from that of its nuclear 
structure.  This feature is useful for fitting a model system in which the magnetic 
roughness of an interface differs from its and chemical roughness [73]. 
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Data file format 

The four-column data file format used by CO_REFINE is also needed by 
SPIN_FLIP.  Three data files are required, “pfn_pp.out”, “pfn_mm.out”, and “pfn_sf.out” 
that contain the R++, R-- and RSF reflectivities, respectively.  The maximum number of 
data points is 7000. 

Model (or guess) file format 

The three-column format containing a column of parameter values and lower and 
upper bounds used by CO_REFINE is required for SPIN_FLIP.  After the first row, 
which simply contains the word “MODEL”, layers are parameterized by ρn, ρm, φ (the 
angle between the layer magnetization and the applied field), σ, and layer thickness, ∆.  
Valid values of φ are those between –2π and π/2. The maximum number of layers is 203.  
Following the parameters for the layers, are the three parameters ρn, ρm, φ for the 
substrate, then  and . 0 B

nI nI

For refinements involving one model, the nuclear and magnetic structures are 
provided in a single model file.  Even though parameters for the magnetic structure of the 
sample can be included in the file (and optimized), this guess file is called the chemical 
file.  For refinements involving a nuclear model that is possibly different from the 
magnetic model, the parameters of the nuclear model are given in the chemical file (an 
example is shown in Figure 44), and the parameters of the magnetic model, which may 
include values of ρm, φ, σ, or ∆ for different layers, are given in the second file (called the 
magnetic guess file, see Figure 45) and supercede those in the chemical file if different. 
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Figure 44 An example of a file containing guess parameters that describe the chemical or nuclear 
scattering length density profiles of the FeCo/GaAs sample.  Information about the magnetic 
structure of the sample can also be included in the chemical guess file.  The chemical guess file is 
required for operation of SPIN_FLIP. 

 

 
Figure 45 An example of a file containing guess parameters that describe the magnetic scattering 
length density profile of the FeCo/GaAs sample.  The magnetic guess file is optional for operation for 
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SPIN_FLIP.  Two guess files,  chemical and magnetic files, are required in simulations in which the 
chemical and magnetic structures of a sample are not necessarily commensurate.   

A worked example using SPIN_FLIP 

Operation of SPIN_FLIP is nearly identical to that of CO_REFINE.  Examples of 
guess files, containing nuclear and magnetic parameters in one file (guess.joint), and in 
separate files (guess.nuclear and guess.magnetic) are located in the spin_flip directory of 
the attached compact disk. Neutron data appearing in Figure 37 are also located in this 
directory.  In calculating the scattering length density profiles, SPIN_FLIP like 
CO_REFINE uses the parameters in the guess files to construct Gaussian profiles that 
comprise the derivatives of the nuclear and magnetic density profiles with depth.   The 
same technique is also used to compute the depth profile of φ(y)—the angle between the 
applied field and the sample magnetization.  In other words, if φ = -π/2 were specified for 
the FeCo layer and is 0 elsewhere, then at the Al/FeCo interface and the FeCo/GaAs 
interface, not only would the magnitude of the FeCo magnetization increase as the FeCo 
layer is approached (an increase determined by the magnetic roughness of the interface), 
but the direction of the magnetization would rotate (in the sample plane) from 0° to 90° 
to the applied field as well.  For some systems, the twisting of φ might be desirable, but 
for the case of representing the magnetization of FeCo/GaAs, twisting was not desired.  
Twisting magnetization can be avoided by constraining φ for every layer to be the same 
(and then optimizing one of values of φ, if desired) using the method of constraints 
discussed in the previous section.   

SPIN_FLIP can be invoked and information fed into the program interactively, or 
information can be fed into the program from a command file (this mode of operation is 
also possible with CO_REFINE).  For example, information form the file “job.txt” (see 
Figure 46) containing information needed by SPIN_FLIP, is fed to the program by typing 
the command line “spin_flip < job.txt”. Use of constraints is also shown in the figure.  An 
example of execution of SPIN_FLIP is shown in Figure 47. 
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Figure 46 File containing information needed to run SPIN_FLIP.  The information can be supplied 
interactively or a file containing the information can be fed into SPIN_FLIP.  An example of the use 
of constraints is shown in this example.  Here, the values of φ (see text) for the first, second and 
substrate layers are constrained to be the same as the value of φ for the third layer (i.e., parameter 
number 13). 
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Figure 47  Invocation of the SPIN_FLIP program is shown.  After optimization is complete (this 
figure shows SPIN_FLIP during optimization) the user is queried for names of files to contain the 
fitted curves, the scattering length density profiles, and the parameter listing files, respectively. 
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